Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Enrico Le Donne"'
Autor:
Sylvester Eriksson-Bique, Chris Gartland, Enrico Le Donne, Lisa Naples, Sebastiano Nicolussi Golo
Publikováno v:
International Mathematics Research Notices.
We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an $L^1$ space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into $L^1$ is abelian. Our proof follows
Autor:
Terhi Moisala, Enrico Le Donne
Publikováno v:
Mathematische Zeitschrift. 299:2257-2285
This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a ph
Autor:
Enrico Le Donne, David M. Freeman
Publikováno v:
Revista Matemática Iberoamericana. 37:671-722
We study locally compact metric spaces that enjoy various forms of homogeneity with respect to Mobius self-homeomorphisms. We investigate connections between such homogeneity and the combination of isometric homogeneity with invertibility. In particu
We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between Heintze groups. Then we will
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6497de463fb99f8269fff53a1e38cc9c
http://urn.fi/URN:NBN:fi:jyu-202302141739
http://urn.fi/URN:NBN:fi:jyu-202302141739
In this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption on the limit vector-field
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::964af19943f521cb2dc17430c33c083f
http://urn.fi/URN:NBN:fi:jyu-202301111268
http://urn.fi/URN:NBN:fi:jyu-202301111268
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 304:49-67
Изучается задача субфинслеровой геометрии на свободной нильпотентной группе ранга $2$ глубины $3$. Такая группа также называется группой
Autor:
Enrico Le Donne, Francesca Tripaldi
Publikováno v:
Le Donne, Enrico; Tripaldi, Francesca (2022). A Cornucopia of Carnot Groups in Low Dimensions. Analysis and geometry in metric spaces, 10(1), pp. 155-289. De Gruyter 10.1515/agms-2022-0138
Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating. When a stratified group is equipped with a left-invariant path distance that is homogeneous wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::309fe2ee183838a0561f37a6278ac892
http://arxiv.org/abs/2008.12356
http://arxiv.org/abs/2008.12356
Autor:
Enrico Le Donne, Guy C. David
Publikováno v:
Proceedings of the American Mathematical Society
The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff
Autor:
Luca Capogna, Enrico Le Donne
Publikováno v:
Mathematische Annalen
We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between smooth strongly pseudoconvex domains in $\C^n$ are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a coroll
In the setting of Carnot groups, we are concerned with the rectifiability problem for subsets that have finite sub-Riemannian perimeter. We introduce a new notion of rectifiability that is possibly, weaker than the one introduced by Franchi, Serapion
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1dde110bd8d3312814ff0e9f9294d4c6
http://arxiv.org/abs/1912.00493
http://arxiv.org/abs/1912.00493