Zobrazeno 1 - 10
of 116
pro vyhledávání: '"Enescu, Florian"'
Autor:
Enescu, Florian, Yao, Yongwei
Publikováno v:
In Journal of Pure and Applied Algebra October 2024 228(10)
Autor:
Enescu, Florian, Ilioaea, Irina
In this note, we use the theory of test ideals and Cartier algebras to examine the interplay between the tight and integral closures in a local ring of positive characteristic. Using work of Schwede, we prove the abundance of strong test ideals, reco
Externí odkaz:
http://arxiv.org/abs/1901.04113
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Enescu, Florian, Pérez, Felipe
Let $R$ be a standard graded finitely generated algebra over an $F$-finite field of prime characteristic, localized at its maximal homogeneous ideal. In this note, we prove that that Frobenius complexity of $R$ is finite. Moreover, we extend this res
Externí odkaz:
http://arxiv.org/abs/1811.03682
Autor:
Enescu, Florian, Spiroff, Sandra
We continue the study of intersection algebras $\mathcal B = \mathcal B_R(I, J)$ of two ideals $I, J$ in a commutative Noetherian ring $R$. In particular, we exploit the semigroup ring and toric structures in order to calculate various invariants of
Externí odkaz:
http://arxiv.org/abs/1810.01499
We construct explicitly a resolution of a fan algebra of principal ideals over a Noetherian ring for the case when the fan is a proper rational cone in the plane. Under some mild conditions on the initial data, we show that this resolution is minimal
Externí odkaz:
http://arxiv.org/abs/1612.02939
Autor:
Enescu, Florian, Yao, Yongwei
We compute the Frobenius complexity for the determinantal ring of prime characteristic $p$ obtained by modding out the $2 \times 2$ minors of an $m \times n$ matrix of indeterminates, where $m > n \ge 2$. We also show that, as $p \to \infty$, the Fro
Externí odkaz:
http://arxiv.org/abs/1503.03164
Publikováno v:
J. Inst. Math. Jussieu 17 (2018), no. 1, 171-206
Many results are known about test ideals and $F$-singularities for ${\bf Q}$-Gorenstein rings. In this paper we generalize many of these results to the case when the symbolic Rees algebra $O_X \oplus O_X(-K_X) \oplus O_X(-2K_X) \oplus ...$ is finitel
Externí odkaz:
http://arxiv.org/abs/1412.6453
Publikováno v:
In Journal of Algebra 1 January 2020 541:61-97
Autor:
Enescu, Florian, Malec, Sara
The properties of the intersection algebra of two principal monomial ideals in a polynomial ring are investigated in detail. Results are obtained regarding the Hilbert series and the canonical ideal of the intersection algebra using methods from the
Externí odkaz:
http://arxiv.org/abs/1409.1319