Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Energy-dissipation balance"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mielke, Alexander
The present notes provide an extended version of a small lecture course given at the Humboldt Universit\"at zu Berlin in the Winter Term 2022/23 (of 36 hours). The material starting in Section 5.4 was added afterwards. The aim of these notes to give
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5cdaeeefbf271b8736d5f343100b8299
We consider a linear system that consists of a linear wave equation on a horizontal hypersurface and a parabolic equation in the half space below. The model describes longitudinal elastic waves in organic monolayers at the water–air interface, whic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bc983bb9b99253520b9ca38d4bcc8ab1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lorenzo Nardini, Filippo Riva
In this paper we analyse a one-dimensional debonding model for a thin film peeled from a substrate when viscosity is taken into account. It is described by the weakly damped wave equation whose domain, the debonded region, grows according to a Griffi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b9879be54f2d538bd2c71bf1420b0dd9
http://hdl.handle.net/20.500.11767/124849
http://hdl.handle.net/20.500.11767/124849
In this paper we deal with a debonding model for a thin film in dimension two, where the wave equation on a time-dependent domain is coupled with a flow rule (Griffith's principle) for the evolution of the domain. We propose a general definition of e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fecd23f93414b37001b69729fbbd83e1
http://arxiv.org/abs/2012.04993
http://arxiv.org/abs/2012.04993
Publikováno v:
Journal of Mathematical Analysis and Applications
Journal of Mathematical Analysis and Applications, Elsevier, 2020, 483 (2), pp.123656. ⟨10.1016/j.jmaa.2019.123656⟩
Journal of Mathematical Analysis and Applications, Elsevier, 2020, 483 (2), pp.123656. ⟨10.1016/j.jmaa.2019.123656⟩
In this paper we provide necessary and sufficient conditions in order to guarantee the energy-dissipation balance of a Mode III crack, growing on a prescribed smooth path. Moreover, we characterize the singularity of the displacement near the crack t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1e08ff9c5bf293d418e3e4a28ef5c83
https://hal.archives-ouvertes.fr/hal-02893747
https://hal.archives-ouvertes.fr/hal-02893747
Autor:
Artur Stephan
We perform a fast-reaction limit for a linear reaction-diffusion system consisting of two diffusion equations coupled by a linear reaction. We understand the linear reaction-diffusion system as a gradient flow of the free energy in the space of proba
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b36b0b8326bcc61f17c14d0159d21d76
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alexander Mielke, Artur Stephan
We consider linear reaction systems with slow and fast reactions, which can be interpreted as master equations or Kolmogorov forward equations for Markov processes on a finite state space. We investigate their limit behavior if the fast reaction rate
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::63a2a18afbf58d5f9cdc36fd669364e5