Zobrazeno 1 - 10
of 185
pro vyhledávání: '"Encinas, S."'
The asymptotic Samuel function generalizes to arbitrary rings the usual order function of a regular local ring. Here we explore some natural properties in the context of excellent, equidimensional rings containing a field. In addition, we establish s
Externí odkaz:
http://arxiv.org/abs/2307.11489
The asymptotic Samuel function generalizes to arbitrary rings the usual order function of a regular local ring. In this paper, we use this function to introduce the notion of the Samuel slope of a Noetherian local ring, and we study some of its prope
Externí odkaz:
http://arxiv.org/abs/2107.14188
Autor:
Bravo, A., Encinas, S.
Publikováno v:
Journal of Pure and Applied Algebra, Volume 225, Issue 11, (2021), 106728
We study finite morphisms of varieties and the link between their top multiplicity loci under certain assumptions. More precisely, we focus on how to determine that link in terms of the spaces of arcs of the varieties.
Comment: 17 pages. arXiv a
Comment: 17 pages. arXiv a
Externí odkaz:
http://arxiv.org/abs/1912.00006
Publikováno v:
Manuscripta Mathematica, volume 166, pages 131-165 (2021)
We study contact loci sets of arcs and the behavior of Hironaka's order function defined in constructive Resolution of singularities. We show that this function can be read in terms of the irreducible components of the contact loci sets at a singular
Externí odkaz:
http://arxiv.org/abs/1811.12203
Publikováno v:
Indiana Univ. Math. J. 69 (2020), no. 6, 1933-1973
When $X$ is a $d$-dimensional variety defined over a field $k$ of characteristic zero, a constructive resolution of singularities can be achieved by successively lowering the maximum multiplicity via blow ups at smooth equimultiple centers. This is d
Externí odkaz:
http://arxiv.org/abs/1802.02566
Autor:
Bravo, A., Encinas, S.
Publikováno v:
In Journal of Pure and Applied Algebra November 2021 225(11)
Publikováno v:
Indiana University Mathematics Journal, 2020 Jan 01. 69(6), 1933-1973.
Externí odkaz:
https://www.jstor.org/stable/26959880
Publikováno v:
Collect. Math. (2017) 68:175-217
The Nash multiplicity sequence was defined by M. Lejeune-Jalabert as a non-increasing sequence of integers attached to a germ of a curve inside a germ of a hypersurface. M. Hickel generalized this notion and described a sequence of blow ups which all
Externí odkaz:
http://arxiv.org/abs/1510.09043
Publikováno v:
Revista Matematica Complutense; May2024, Vol. 37 Issue 2, p603-652, 50p
Autor:
Encinas, S., Hauser, H.
Publikováno v:
Comment. Math. Helv. 77 (2002) 821-845
We present a concise proof for the existence and construction of a {\it strong resolution of excellent schemes} of finite type over a field of characteristic zero. Our proof is based on earlier work of Villamayor, Encinas-Villamayor and Bierstone-Mil
Externí odkaz:
http://arxiv.org/abs/math/0211423