Zobrazeno 1 - 1
of 1
pro vyhledávání: '"Emura, Tatsuo"'
Publikováno v:
Australasian J. Combin. 85 (2023), 159--163
Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope of dimension $d$. Let $b$ denote the number of lattice points belonging to the boundary of $\mathcal{P}$ and $c$ that to the interior of $\mathcal{P}$. It follows from a lower bound theorem
Externí odkaz:
http://arxiv.org/abs/2301.09972