Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Emmi Jokinen"'
Autor:
Jani Huuhtanen, Liang Chen, Emmi Jokinen, Henna Kasanen, Tapio Lönnberg, Anna Kreutzman, Katriina Peltola, Micaela Hernberg, Chunlin Wang, Cassian Yee, Harri Lähdesmäki, Mark M. Davis, Satu Mustjoki
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-14 (2022)
Previous studies have characterized the diversity and dynamics of the T cell receptor (TCR) repertoire in patients with solid cancer. Here, by analyzing TCR repertoire data from multiple datasets, the authors report that melanoma-associated antigen-s
Externí odkaz:
https://doaj.org/article/768266209ecd42159605fd10e39aeab5
Autor:
Jani Huuhtanen, Sofie Lundgren, Mikko Keränen, Xingim Feng, Alina Dulau-Florea, Bhavisha Patel, Yoshitaka Zaimoku, Cassandra Kerr, Emmi Jokinen, Markus Heinonen, Hanna Rajala, Sanna Siitonen, Freja Ebeling, Georgina Ryland, Lucy Fox, Piers Blombery, Eva Hellström-Lindberg, Jaroslaw P. Maciejewski, Neal S. Young, Harri Lähdesmäki, Satu Mustjoki
Publikováno v:
HemaSphere, Vol 7, p e2285644 (2023)
Externí odkaz:
https://doaj.org/article/e86b35d4b8084784b622157a832f1600
Autor:
Jani Huuhtanen, Henna Kasanen, Katriina Peltola, Tapio Lönnberg, Virpi Glumoff, Oscar Brück, Olli Dufva, Karita Peltonen, Johanna Vikkula, Emmi Jokinen, Mette Ilander, Moon Hee Lee, Siru Mäkelä, Marta Nyakas, Bin Li, Micaela Hernberg, Petri Bono, Harri Lähdesmäki, Anna Kreutzman, Satu Mustjoki
Publikováno v:
The Journal of Clinical Investigation, Vol 133, Iss 6 (2023)
Background Relatlimab plus nivolumab (anti–lymphocyte-activation gene 3 plus anti–programmed death 1 [anti–LAG-3+anti–PD-1]) has been approved by the FDA as a first-line therapy for stage III/IV melanoma, but its detailed effect on the immune
Externí odkaz:
https://doaj.org/article/45e8a21ae8814471ba60e41684de20f1
Publikováno v:
PLoS Computational Biology, Vol 17, Iss 3, p e1008814 (2021)
Adaptive immune system uses T cell receptors (TCRs) to recognize pathogens and to consequently initiate immune responses. TCRs can be sequenced from individuals and methods analyzing the specificity of the TCRs can help us better understand individua
Externí odkaz:
https://doaj.org/article/af10899f9cdf4d0d960986d9bf8992f8
Autor:
Emmi Jokinen, Alexandru Dumitrescu, Jani Huuhtanen, Vladimir Gligorijević, Satu Mustjoki, Richard Bonneau, Markus Heinonen, Harri Lähdesmäki
Motivation T cells use T cell receptors (TCRs) to recognize small parts of antigens, called epitopes, presented by major histocompatibility complexes. Once an epitope is recognized, an immune response is initiated and T cell activation and proliferat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c9606ad564477c95a6bc6ab0cb219df
https://aaltodoc.aalto.fi/handle/123456789/119173
https://aaltodoc.aalto.fi/handle/123456789/119173
Signal peptides are short amino acid segments present at the N-terminus of newly synthesized proteins that facilitate protein translocation into the lumen of the endoplasmic reticulum, after which they are cleaved off. Specific regions of signal pept
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c7ce3e48816a8c45f6477f186cc17e8a
https://doi.org/10.1101/2022.06.02.493958
https://doi.org/10.1101/2022.06.02.493958
Autor:
Emmi Jokinen, Alexandru Dumitrescu, Jani Huuhtanen, Vladimir Gligorijević, Satu Mustjoki, Richard Bonneau, Markus Heinonen, Harri Lähdesmäki
We introduce TCRconv, a deep learning model for predicting recognition between T-cell receptors and epitopes. TCRconv uses a deep protein language model and convolutions to extract contextualized motifs and provides state-of-the-art TCR-epitope predi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3517d560a5c76793217e7125df3ae794
https://doi.org/10.1101/2022.05.23.493034
https://doi.org/10.1101/2022.05.23.493034
Autor:
Emmi Jokinen, Sanni Voutilainen, Markus Heinonen, Hannu Maaheimo, Anu Koivula, Martina Andberg, Juho Rousu, Juha Rouvinen, Merja Penttilä, Harri Lähdesmäki, Samuel Kaski, Johan Pääkkönen, Nina Hakulinen
Publikováno v:
Applied Microbiology and Biotechnology
Voutilainen, S, Heinonen, M, Andberg, M, Jokinen, E, Maaheimo, H, Pääkkönen, J, Hakulinen, N, Rouvinen, J, Lähdesmäki, H, Kaski, S, Rousu, J, Penttilä, M & Koivula, A 2020, ' Substrate specificity of 2-deoxy-D-ribose 5-phosphate aldolase (DERA) assessed by different protein engineering and machine learning methods ', Applied Microbiology and Biotechnology, vol. 104, no. 24, pp. 10515-10529 . https://doi.org/10.1007/s00253-020-10960-x
'Applied Microbiology and Biotechnology ', vol: 104, pages: 10515-10529 (2020)
Voutilainen, S, Heinonen, M, Andberg, M, Jokinen, E, Maaheimo, H, Pääkkönen, J, Hakulinen, N, Rouvinen, J, Lähdesmäki, H, Kaski, S, Rousu, J, Penttilä, M & Koivula, A 2020, ' Substrate specificity of 2-deoxy-D-ribose 5-phosphate aldolase (DERA) assessed by different protein engineering and machine learning methods ', Applied Microbiology and Biotechnology, vol. 104, no. 24, pp. 10515-10529 . https://doi.org/10.1007/s00253-020-10960-x
'Applied Microbiology and Biotechnology ', vol: 104, pages: 10515-10529 (2020)
Abstract In this work, deoxyribose-5-phosphate aldolase (Ec DERA, EC 4.1.2.4) from Escherichia coli was chosen as the protein engineering target for improving the substrate preference towards smaller, non-phosphorylated aldehyde donor substrates, in
Publikováno v:
Bioinformatics
Motivation Proteins are commonly used by biochemical industry for numerous processes. Refining these proteins’ properties via mutations causes stability effects as well. Accurate computational method to predict how mutations affect protein stabilit
T cell receptors (TCRs) can recognize various pathogens and consequently start immune responses. TCRs can be sequenced from individuals and methods analyzing the specificity of the TCRs can help us better understand individuals’ immune status in di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ecae14c45fe4ef15cec0b9ed81fe6cac
https://doi.org/10.1101/542332
https://doi.org/10.1101/542332