Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Emmanuil H Georgoulis"'
Publikováno v:
IMA Journal of Numerical Analysis.
A popular approach for proving a posteriori error bounds in various norms for evolution problems with partial differential equations uses reconstruction operators to recover conforming objects from the approximate solutions. So far, lower bounds in r
Publikováno v:
Mathematics of Computation
Mathematics of Computation, 2022, 91 (333), pp.1-35. ⟨10.1090/mcom/3667⟩
Mathematics of Computation, American Mathematical Society, 2022, 91 (333), pp.1-35. ⟨10.1090/mcom/3667⟩
Mathematics of Computation, American Mathematical Society, In press, ⟨10.1090/mcom/3667⟩
Mathematics of Computation, 2022, 91 (333), pp.1-35. ⟨10.1090/mcom/3667⟩
Mathematics of Computation, American Mathematical Society, 2022, 91 (333), pp.1-35. ⟨10.1090/mcom/3667⟩
Mathematics of Computation, American Mathematical Society, In press, ⟨10.1090/mcom/3667⟩
We extend the applicability of the popular interior penalty discontinuous Galerkin method discretizing advection-diffusion-reaction problems to meshes comprising extremely general, essentially arbitrarily-shaped element shapes. In particular, our ana
Publikováno v:
Mathematical Models and Methods in Applied Sciences. 31:711-751
We present a posteriori error estimates for inconsistent and non-hierarchical Galerkin methods for linear parabolic problems, allowing them to be used in conjunction with very general mesh modification for the first time. We treat schemes which are n
Autor:
Zhaonan Dong, Emmanuil H. Georgoulis
Publikováno v:
Journal of Scientific Computing
Journal of Scientific Computing, 2022, 92 (2), pp.57. ⟨10.1007/s10915-022-01916-6⟩
Journal of Scientific Computing, 2022, 92 (2), pp.57. ⟨10.1007/s10915-022-01916-6⟩
Classical interior penalty discontinuous Galerkin (IPDG) methods for diffusion problems require a number of assumptions on the local variation of mesh-size, polynomial degree, and of the diffusion coefficient to determine the values of the, so-called
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::06e577de98ab19c3cdf42b4b5bced6f9
https://inria.hal.science/hal-03315088v3/file/DG-weighted_revision.pdf
https://inria.hal.science/hal-03315088v3/file/DG-weighted_revision.pdf
Autor:
Emmanuil H. Georgoulis
Publikováno v:
SIAM Journal on Numerical Analysis. 59:173-194
This work is concerned with the development of a family of Galerkin finite element methods for the classical Kolmogorov's equation. Kolmogorov's equation serves as a sufficiently rich, for our purposes, model problem for kinetic-type equations and is
Publikováno v:
Mathematics of Computation. 90:637-640
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis. 54:1309-1337
Recovered Finite Element Methods (R-FEM) have been recently introduced in Georgoulis and Pryer [Comput. Methods Appl. Mech. Eng. 332 (2018) 303–324]. for meshes consisting of simplicial and/or box-type elements. Here, utilising the flexibility of t
Publikováno v:
SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2021, 43 (4), ⟨10.1137/20M1350984⟩
SIAM Journal on Scientific Computing, 2021, 43 (4), pp.C312-C334. ⟨10.1137/20M1350984⟩
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2021, 43 (4), pp.C312-C334. ⟨10.1137/20M1350984⟩
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2021, 43 (4), ⟨10.1137/20M1350984⟩
SIAM Journal on Scientific Computing, 2021, 43 (4), pp.C312-C334. ⟨10.1137/20M1350984⟩
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2021, 43 (4), pp.C312-C334. ⟨10.1137/20M1350984⟩
International audience; Discontinuous Galerkin (dG) methods on meshes consisting of polygonal/polyhedral (henceforth, collectively termed as polytopic) elements have received considerable attention in recent years. Due to the physical frame basis fun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aac94b8e0a96c7ff4e1923ba880eb296
https://hal.inria.fr/hal-03109548
https://hal.inria.fr/hal-03109548
Publikováno v:
Computers and mathematics with applications., 2019, Vol.78(9), pp.3090-3104 [Peer Reviewed Journal]
An a posteriori error estimator for the error in the (L2(H1)+L1(L2))-type norm for an interior penalty discontinuous Galerkin (dG) spatial discretisation and backward Euler temporal discretisation of linear non-stationary convection-diusion initial/b
Publikováno v:
IMA Journal of Numerical Analysis. 40:2450-2472
A Virtual Element Method (VEM) for the quasilinear equation −div(κ(u)gradu) = f using general polygonal and polyhedral meshes is presented and analysed. The nonlinear coefficient is evaluated with the piecewise polynomial projection of the virtual