Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Emmanuel Wagner"'
Autor:
Emmanuel Wagner Pereira Mendes, Évelyn Cristina Morais Pessôa Lima, Eliana Lessa Cordeiro, Vanessa Lacerda Duarte, Luiz Claudio Luna da Silva, Liniker Scolfild Rodrigues da Silva
Publikováno v:
SMAD Revista Eletrônica Saúde Mental Álcool e Drogas (Edição em Português). 16:1-10
Objetivo: este estudo teve como objetivo relacionar o padrão de uso, abuso e problemas relacionados ao álcool entre os pacientes que tentaram suicídio em Recife no ano de 2015. Método: trata-se de um estudo transversal, prospectivo, do tipo descr
Autor:
Emmanuel Wagner, Delphine Moussard
Publikováno v:
Journal of the Mathematical Society of Japan
Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2020, 72 (3), pp.891-907. ⟨10.2969/jmsj/82218221⟩
J. Math. Soc. Japan 72, no. 3 (2020), 891-907
Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2020, 72 (3), pp.891-907. ⟨10.2969/jmsj/82218221⟩
J. Math. Soc. Japan 72, no. 3 (2020), 891-907
International audience; For knots in S-3, it is well-known that the Alexander polynomial of a ribbon knot factorizes as f(t)f(t(-1)) for some polynomial f(t). By contrast, the Alexander polynomial of a ribbon 2-knot in S-4 is not even symmetric in ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90beda00f9fc86b55dc1ddd448ef4889
https://hal.archives-ouvertes.fr/hal-03031878
https://hal.archives-ouvertes.fr/hal-03031878
Autor:
Louis-Hadrien Robert, Emmanuel Wagner
Publikováno v:
Quantum Topology
Quantum Topology, 2020, 11 (3), pp.411-487. ⟨10.4171/QT/139⟩
Quantum Topology, European Mathematical Society Publishing House, 2020, 11 (3), pp.411-487. ⟨10.4171/QT/139⟩
Quantum Topology, 2020, 11 (3), pp.411-487. ⟨10.4171/QT/139⟩
Quantum Topology, European Mathematical Society Publishing House, 2020, 11 (3), pp.411-487. ⟨10.4171/QT/139⟩
International audience; We give a purely combinatorial formula for evaluating closed, decorated foams. Our evaluation gives an integral polynomial and is directly connected to an integral, equivariant version of colored Khovanov-Rozansky link homolog
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::41c2acf623b5a2723c793a6110ee2ef4
https://uca.hal.science/hal-04155421
https://uca.hal.science/hal-04155421
Autor:
Lessa Cordeiro, Eliana, Rodrigues da Silva, Liniker Scolfild, Pereira Mendes, Emmanuel Wagner, Luna da Silva, Luiz Claudio, Lacerda Duarte, Vanessa, Morais Pessôa Lima, Évelyn Cristina
Publikováno v:
SMAD Revista Electronica Salud Mental, Alcohol y Drogas; Jan-Mar2020, Vol. 16 Issue 1, p1-10, 10p
Autor:
LessaCordeiro, Eliana, Rodrigues da Silva, Liniker Scolfild, Pereira Mendes, Emmanuel Wagner, Luna da Silva, Luiz Claudio, Lacerda Duarte, Vanessa, Morais Pessôa Lima, Évelyn Cristina
Publikováno v:
SMAD Revista Electronica Salud Mental, Alcohol y Drogas; Jan-Mar2020, Vol. 16 Issue 1, p1-10, 10p
Publikováno v:
Winter Braids Lecture Notes. 3:i-viii
Publikováno v:
Winter Braids Lecture Notes. 2:i-vi
Autor:
Emmanuel Wagner, L. Poulain d'Andecy
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Cambridge University Press (CUP), 2018, 148 (06), pp.1269-1278. ⟨10.1017/S0308210518000203⟩
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Cambridge University Press (CUP), 2018, 148 (06), pp.1269-1278. ⟨10.1017/S0308210518000203⟩
We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.
8 pages
8 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::73f05ce94244c51e994b8a2931e45c7f
https://hal.archives-ouvertes.fr/hal-01962477
https://hal.archives-ouvertes.fr/hal-01962477
Publikováno v:
Winter Braids Lecture Notes. 1:i-viii
Publikováno v:
Journal of topology
Journal of topology, Oxford University Press, 2017, 10 (4), pp.1107-1123. ⟨10.1112/topo.12041⟩
Journal of topology, Oxford University Press, 2017, 10 (4), pp.1107-1123. 〈10.1112/topo.12041〉
Journal of topology, 2017, 10 (4), pp.1107-1123. ⟨10.1112/topo.12041⟩
Journal of topology, Oxford University Press, 2017, 10 (4), pp.1107-1123. ⟨10.1112/topo.12041⟩
Journal of topology, Oxford University Press, 2017, 10 (4), pp.1107-1123. 〈10.1112/topo.12041〉
Journal of topology, 2017, 10 (4), pp.1107-1123. ⟨10.1112/topo.12041⟩
We consider knotted annuli in 4-space, called 2-string-links, which are knotted surfaces in codimension two that are naturally related, via closure operations, to both 2-links and 2-torus links. We classify 2-string-links up to link-homotopy by means
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f4f0f8990190e3650f0b16ad3505bcc
https://hal.archives-ouvertes.fr/hal-01504996v2/document
https://hal.archives-ouvertes.fr/hal-01504996v2/document