Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Emily B. Tsai"'
Publikováno v:
American Journal of Roentgenology. 219:703-712
Publikováno v:
AJR. American journal of roentgenology. 219(5)
Interest in artificial intelligence (AI) applications for lung nodules continues to grow among radiologists, particularly with the expanding eligibility criteria and clinical utilization of lung cancer screening CT. AI has been heavily investigated f
Publikováno v:
Contemporary Diagnostic Radiology. 43:1-5
Autor:
Ann N. Leung, Emily B. Tsai, Shaden F Mohammad, Monica Deshmukh, Maitraya K. Patel, Cecilia M. Jude
Publikováno v:
Contemporary Diagnostic Radiology. 42:1-6
Publikováno v:
Journal of the American College of Radiology. 15:1673-1680
Purpose This study evaluated the long-term effectiveness of mandatory assignment of both a clinical decision rule (CDR) and highly sensitive d-dimer in the evaluation of patients with suspected pulmonary embolism (PE). Materials and Methods Instituti
Autor:
Joel W. Neal, Ann N. Leung, Heather A. Wakelee, Rishi Raj, M.C. Lin, J.J. Mooney, D. Filsoof, P. Garcia, Hoda Sharifi, H. Henry Guo, Kavitha Ramchandran, K. de Boer, Sukhmani K. Padda, Millie Das, J. Im, Emily B. Tsai, M. Stedman, T.R. Katsumoto, S. Anand
Publikováno v:
TP27. TP027 DIFFUSE PARENCHYMAL LUNG DISEASE: PATIENT CHARACTERISTICS AND OUTCOMES.
Autor:
Emily B. Tsai, Jin Zhang, Minghui Lu, N. R. Bennett, Adam Wang, H. H. Guo, Josh Star-Lack, Linxi Shi, Mingshan Sun
Publikováno v:
Medical Imaging 2021: Physics of Medical Imaging.
Chest radiography (CXR) plays an important role in triage, management, and monitoring of patients with COVID-19. In this work, we use a dual-layer (DL) flat-panel detector to perform artifact-free single-exposure DE CXR for COVID-19 detection. A simu
Autor:
Jayashree Kalpathy-Cramer, George Shih, Brian P Pogatchnik, Prabhakar Rajiah, Jody Shen, Jeffrey P. Kanne, Michelle Hershman, Linda Moy, Mona Hafez, Scott A. Simpson, Emily B. Tsai, Carol C. Wu, John Mongan, Felipe Kitamura, Emre Altinmakas, Errol Colak, Bradley J. Erickson, Anouk Stein, Erik Ranschaert, Susan John, Laurens Topff, Leonid Roshkovan, Matthew P. Lungren
Publikováno v:
Radiology
RADIOLOGY
RADIOLOGY
The coronavirus disease 2019 (COVID-19) pandemic is a global health care emergency. Although reverse-transcription polymerase chain reaction testing is the reference standard method to identify patients with COVID-19 infection, chest radiography and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83f567880f6a3e49a3c9539ee4f838e1
http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9493
http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9493
Publikováno v:
NAACL-HLT
Neural image-to-text radiology report generation systems offer the potential to improve radiology reporting by reducing the repetitive process of report drafting and identifying possible medical errors. However, existing report generation systems, de
Publikováno v:
ACL
Neural abstractive summarization models are able to generate summaries which have high overlap with human references. However, existing models are not optimized for factual correctness, a critical metric in real-world applications. In this work, we d