Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Emilio Barocio Espejo"'
Autor:
Ramón Octavio Jiménez Betancourt, Juan Miguel González López, Emilio Barocio Espejo, Antonio Concha Sánchez, Efraín Villalvazo Laureano, Sergio Sandoval Pérez, Luis Contreras Aguilar
Publikováno v:
Sensors, Vol 20, Iss 21, p 6178 (2020)
This work proposes a real-time electricity bill for quantifying the energy used in domestic facilities in Mexico. This bill is a low-cost tool that takes advantage of the IoT technology for generating an easy reading real-time bill allowing the custo
Externí odkaz:
https://doaj.org/article/9bd99f76b3a44261b1b9cd7b03d75912
Publikováno v:
Monitoring and Control of Electrical Power Systems Using Machine Learning Techniques ISBN: 9780323999045
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::faf1e97eed2d9ed544103f7fdac42583
https://doi.org/10.1016/b978-0-32-399904-5.00012-0
https://doi.org/10.1016/b978-0-32-399904-5.00012-0
Autor:
Oswaldo Isaac Cortes Robles, Emilio Barocio Espejo, Juan Segundo Ramírez, Julio Cesar Hernández Ramírez
Publikováno v:
Monitoring and Control of Electrical Power Systems Using Machine Learning Techniques ISBN: 9780323999045
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5fd21d4e718e0b324864632f5ecc0e61
https://doi.org/10.1016/b978-0-32-399904-5.00008-9
https://doi.org/10.1016/b978-0-32-399904-5.00008-9
Publikováno v:
Monitoring and Control of Electrical Power Systems Using Machine Learning Techniques ISBN: 9780323999045
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bf5b5bfa3e755469fef3e01e0c2a0c14
https://doi.org/10.1016/b978-0-32-399904-5.00009-0
https://doi.org/10.1016/b978-0-32-399904-5.00009-0
Autor:
César Angeles-Camacho, Mario Roberto Arrieta-Paternina, Alexandre Balbinot, Emilio Barocio Espejo, Ernesto Beltran, Ramón J. Betancourt, Christoph Brosinsky, Daniele Carta, Gabriela Castillo-García, Oswaldo Isaac Cortes Robles, Jochen L. Cremer, José Antonio de la O Serna, Dunstano del Puerto Flores, José Guadalupe Fuentes-Velázquez, Luis Alonso Trujillo Guajardo, Daniel Guillen, Julio Cesar Hernández Ramírez, Mert Karaçelebi, Eleftherios O. Kontis, Petr Korba, Roberto Leborgne, Gabriel Mejía-Ruiz, Theofilos A. Papadopoulos, Grigoris K. Papagiannis, Paolo Attilio Pegoraro, Ana Karen Apolo Peñaloza, Juan M. Ramirez, Juan Segundo Ramírez, Juan Sebastián Rocha-Doria, Ramón Daniel Rodríguez-Soto, Fernando Salinas Salinas, Antonio Concha Sánchez, Betsy Sandoval Guzmán, Felix Rafael Segundo Sevilla, Antonio Vincenzo Solinas, Sara Sulis, Nitin Sundriyal, Mazheruddin H. Syed, Vicente Torres-García, Alejandro Zamora-Méndez
Publikováno v:
Monitoring and Control of Electrical Power Systems Using Machine Learning Techniques ISBN: 9780323999045
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::acd757a6c8c2d0c18e487580ed765261
https://doi.org/10.1016/b978-0-32-399904-5.00005-3
https://doi.org/10.1016/b978-0-32-399904-5.00005-3
Autor:
Ramón J. Betancourt, Ramón Daniel Rodríguez-Soto, Antonio Concha Sánchez, Emilio Barocio Espejo
Publikováno v:
Monitoring and Control of Electrical Power Systems Using Machine Learning Techniques ISBN: 9780323999045
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::82429b9f16d905ae792593726ff08e73
https://doi.org/10.1016/b978-0-32-399904-5.00013-2
https://doi.org/10.1016/b978-0-32-399904-5.00013-2
Publikováno v:
2021 IEEE Madrid PowerTech.
Contingency Screening and Coherent Identification are two fundamental parts of power system planning and operation. A common characteristic among these two methods is the need to analyze multiples contingencies. However, most of the current work exis
Autor:
R.J. Betancourt, Jaime A. Ledesma, Marco Antonio Pérez-González, Juan Miguel Gonzalez-Lopez, Emilio Barocio Espejo, Efraín Villalvazo Laureano
Publikováno v:
Computer Applications in Engineering Education. 27:1555-1570
Monitoring and Control of Electrical Power Systems using Machine Learning Techniques bridges the gap between advanced machine learning techniques and their application in the control and monitoring of electrical power systems, particularly relevant f
Publikováno v:
IET Generation, Transmission & Distribution. 12:1247-1255
In this study, a comprehensive approach for model order reduction based on a Fourier series of a discrete system representation is proposed. The developed method represents an alternative to model reduction of large-scale dynamical systems and can be