Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Emile Le Page"'
Let (Z n) n≥0 with Z n = (Z n (i, j)) 1≤i,j≤p be a p multi-type critical branching process in random environment, and let M n be the expectation of Z n given a fixed environment. We prove theorems on convergence in distribution of sequences of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35bf7e3cfd3b0c8f98df19b5cb3937ca
http://arxiv.org/abs/2006.10994
http://arxiv.org/abs/2006.10994
Publikováno v:
Probability Theory and Related Fields
Probability Theory and Related Fields, Springer Verlag, 2020, 176 (1-2), pp.669-735. ⟨10.1007/s00440-019-00948-8⟩
Probability Theory and Related Fields, Springer Verlag, 2020, 176 (1-2), pp.669-735. ⟨10.1007/s00440-019-00948-8⟩
Let $$(X_n)_{n\geqslant 0}$$ be a Markov chain with values in a finite state space $${\mathbb {X}}$$ starting at $$X_0=x \in {\mathbb {X}}$$ and let f be a real function defined on $${\mathbb {X}}$$. Set $$S_n=\sum _{k=1}^{n} f(X_k)$$, $$n\geqslant 1
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7117e4b77fdfcaa9fe20d7c084f0c165
https://hal.archives-ouvertes.fr/hal-02878963/document
https://hal.archives-ouvertes.fr/hal-02878963/document
Publikováno v:
Stochastic Processes and their Applications
Stochastic Processes and their Applications, Elsevier, 2019, 129, pp.2485-2527. ⟨10.1016/j.spa.2018.07.016⟩
Stochastic Processes and their Applications, Elsevier, 2019, 129, pp.2485-2527. ⟨10.1016/j.spa.2018.07.016⟩
Let ( Z n ) n ≥ 0 be a branching process in a random environment defined by a Markov chain ( X n ) n ≥ 0 with values in a finite state space X . Let P i be the probability law generated by the trajectories of X n n ≥ 0 starting at X 0 = i ∈ X
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::752967088c52abab97433ad482cbf418
https://hal.archives-ouvertes.fr/hal-02019644/file/SPAmanuscript.pdf
https://hal.archives-ouvertes.fr/hal-02019644/file/SPAmanuscript.pdf
Publikováno v:
Ann. Inst. H. Poincaré Probab. Statist. 54, no. 1 (2018), 529-568
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2018, 54 (1), pp.529-568
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2018, 54 (1), pp.529-568. ⟨10.1214/16-AIHP814⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2018, 54 (1), pp.529-568
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2018, 54 (1), pp.529-568. ⟨10.1214/16-AIHP814⟩
International audience; Consider the real Markov walk $S_n = X_1+ \dots+ X_n$ with increments $\left(X_n\right)_{n\geqslant 1}$ defined by a stochastic recursion starting at $X_0=x$. For a starting point $y>0$ denote by $\tau_y$ the exit time of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9571c70034a828960d835024f732a8ab
https://projecteuclid.org/euclid.aihp/1519030838
https://projecteuclid.org/euclid.aihp/1519030838
Publikováno v:
Annals of Probability
Annals of Probability, Institute of Mathematical Statistics, 2018, 46 (4), pp.1807-1877. ⟨10.1214/17-AOP1197⟩
Ann. Probab. 46, no. 4 (2018), 1807-1877
Annals of Probability, Institute of Mathematical Statistics, 2018, 46 (4), pp.1807-1877. ⟨10.1214/17-AOP1197⟩
Ann. Probab. 46, no. 4 (2018), 1807-1877
Consider a Markov chain $(X_n)_{n\geqslant 0}$ with values in the state space $\mathbb X$. Let $f$ be a real function on $\mathbb X$ and set $S_0=0,$ $S_n = f(X_1)+\cdots + f(X_n),$ $n\geqslant 1$. Let $\mathbb P_x$ be the probability measure generat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::88c43a0853a124c0978161bc3dc297d9
https://hal.archives-ouvertes.fr/hal-01706547
https://hal.archives-ouvertes.fr/hal-01706547
Publikováno v:
Colloquium Mathematicum
Colloquium Mathematicum, 2014, 134 (1), pp.1-55
Colloquium Mathematicum, 2014, 134 (1), pp.1-55
International audience; We prove an invariance principle for non-stationary random processes and establish a rate of convergence under a new type of mixing condition. The dependence is exponentially decaying in the gap between the past and the future
Publikováno v:
Comptes Rendus Mathematique. 351:69-72
Autor:
Emile Le Page, Yinna Ye
Publikováno v:
Comptes Rendus Mathematique. 348:301-304
In this Note, we first prove a local limit theorem for a semi-Markov chain and then apply it to study the asymptotic behavior of the survival probability of a critical branching process in Markovian random environment.
Autor:
Emile Le Page, Yves Guivarcʼh
Publikováno v:
Comptes Rendus Mathematique. 351:703-705
Resume Nous considerons lʼespace Euclidien R d et une marche aleatoire affine X n sur R d , gouvernee par une probabilite λ portee par le groupe affine H = Aff ( R d ) . Nous supposons que le sous-groupe de H engendre par le support de λ est « gr
Publikováno v:
Comptes Rendus Mathematique. 339:499-502
We study the behavior at infinity of the tail of the stationary solution of a multidimensional linear auto-regressive process with random coefficients. We exhibit an extended class of multiplicative coefficients satisfying a condition of irreducibili