Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Emiel Van Miltenburg"'
Autor:
Emiel Van Miltenburg, Miruna Clinciu, Ondřej Dušek, Dimitra Gkatzia, Stephanie Inglis, Leo Leppänen, Saad Mahamood, Stephanie Schoch, Craig Thomson, Luou Wen
Publikováno v:
Northern European Journal of Language Technology, 9(1), 1-22
Earlier research has shown that few studies in Natural Language Generation (NLG) evaluate their system outputs using an error analysis, despite known limitations of automatic evaluation metrics and human ratings. This position paper takes the stance
Publikováno v:
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 613-623
STARTPAGE=613;ENDPAGE=623;TITLE=Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
NAACL-HLT
Tilburg University-PURE
STARTPAGE=613;ENDPAGE=623;TITLE=Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
NAACL-HLT
Tilburg University-PURE
Preregistration refers to the practice of specifying what you are going to do, and what you expect to find in your study, before carrying out the study. This practice is increasingly common in medicine and psychology, but is rarely discussed in NLP.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91875805f5bd8f2b58311d63b0defb6f
http://arxiv.org/abs/2103.06944
http://arxiv.org/abs/2103.06944
Autor:
Simon Mille, Kaustubh Dhole, Saad Mahamood, Laura Perez-Beltrachini, Varun Prashant Gangal, Mihir Kale, Emiel van Miltenburg, Sebastian Gehrmann
Publikováno v:
Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021)
Tilburg University-PURE
Tilburg University-PURE
Machine learning approaches applied to NLP are often evaluated by summarizing their performance in a single number, for example accuracy. Since most test sets are constructed as an i.i.d. sample from the overall data, this approach overly simplifies
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8070dedc1ce469faf06434bf5532b1aa
Autor:
Thibault Sellam, Vikas Raunak, Cristina Garbacea, Simon Mille, Tatsunori Hashimoto, Miruna-Adriana Clinciu, Ankur P. Parikh, Angelina McMillan-Major, Samira Shaikh, Kaustubh Dhole, Pawan Sasanka Ammanamanchi, Anuoluwapo Aremu, Laura Perez-Beltrachini, Marco Antonio Sobrevilla Cabezudo, Juan Diego Rodriguez, Sashank Santhanam, Bodhisattwa Prasad Majumder, Dhruv Kumar, Esin Durmus, Dipanjan Das, Wei Xu, Wanyu Du, Vitaly Nikolaev, Faisal Ladhak, Moin Nadeem, Chris Chinenye Emezue, Varun Gangal, Diyi Yang, Yangfeng Ji, João Sedoc, Aman Madaan, Shailza Jolly, Saad Mahamood, Karmanya Aggarwal, Emiel van Miltenburg, Antoine Bosselut, Salomey Osei, Jiawei Zhou, Yufang Hou, Harsh Jhamtani, Niranjan Ramesh Rao, Anastasia Shimorina, Shashi Narayan, Akhila Yerukola, Nishant Subramani, Sebastian Gehrmann, Hendrik Strobelt, Khyathi Raghavi Chandu, Yacine Jernite, Tosin P. Adewumi, Mihir Kale, Khyati Mahajan, Andre Niyongabo Rubungo, Pedro Henrique Martins, Ondřej Dušek, Mounica Maddela
Publikováno v:
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), Aug 2021, Online, France. pp.96-120, ⟨10.18653/v1/2021.gem-1.10⟩
Tilburg University-PURE
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), 96-120
STARTPAGE=96;ENDPAGE=120;TITLE=Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), Aug 2021, Online, France. pp.96-120, ⟨10.18653/v1/2021.gem-1.10⟩
Tilburg University-PURE
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), 96-120
STARTPAGE=96;ENDPAGE=120;TITLE=Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)
International audience; We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation
Publikováno v:
Proceedings of the 1st Workshop on Evaluating NLG Evaluation, 17-27
STARTPAGE=17;ENDPAGE=27;TITLE=Proceedings of the 1st Workshop on Evaluating NLG Evaluation
Tilburg University-PURE
STARTPAGE=17;ENDPAGE=27;TITLE=Proceedings of the 1st Workshop on Evaluating NLG Evaluation
Tilburg University-PURE
NLG researchers often use uncontrolled corpora to train and evaluate their systems, using textual similarity metrics, such as BLEU. This position paper argues in favour of two alternative evaluation strategies, using grammars or rule-based systems. T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::bb39dffcc9c8defae0fb3580487e7aa5
https://research.tilburguniversity.edu/en/publications/ea98daa9-081d-4a58-bbd0-ba12912ec9aa
https://research.tilburguniversity.edu/en/publications/ea98daa9-081d-4a58-bbd0-ba12912ec9aa
Autor:
Emiel van Miltenburg, Wei-Ting Lu, Emiel Krahmer, Albert Gatt, Guanyi Chen, Lin Li, Kees van Deemter
Publikováno v:
Proceedings of the 13th International Conference on Natural Language Generation, 398-411
STARTPAGE=398;ENDPAGE=411;TITLE=Proceedings of the 13th International Conference on Natural Language Generation
Tilburg University-PURE
STARTPAGE=398;ENDPAGE=411;TITLE=Proceedings of the 13th International Conference on Natural Language Generation
Tilburg University-PURE
Earlier research has shown that evaluation metrics based on textual similarity (e.g., BLEU, CIDEr, Meteor) do not correlate well with human evaluation scores for automatically generated text. We carried out an experiment with Chinese speakers, where
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8c879dd8e9639e5413368fb999a6e87c
https://research.tilburguniversity.edu/en/publications/3cef1ba5-5633-417f-8dfa-b9d5f571583a
https://research.tilburguniversity.edu/en/publications/3cef1ba5-5633-417f-8dfa-b9d5f571583a
Autor:
Emiel van Miltenburg
Publikováno v:
Tilburg University-PURE
2020 VizWiz Grand Challenge Workshop
2020 VizWiz Grand Challenge Workshop
Automatic image description systems are commonly trained and evaluated using crowdsourced, human-generated image descriptions. The best-performing system is then determined using some measure of similarity to the reference data (BLEU, Meteor, CIDER,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f821c86af4959326148de65f20b87628
http://arxiv.org/abs/2006.08792
http://arxiv.org/abs/2006.08792
Publikováno v:
INLG
Tilburg University-PURE
Proceedings of the 12th International Conference on Natural Language Generation, 355-368
STARTPAGE=355;ENDPAGE=368;TITLE=Proceedings of the 12th International Conference on Natural Language Generation
Tilburg University-PURE
Proceedings of the 12th International Conference on Natural Language Generation, 355-368
STARTPAGE=355;ENDPAGE=368;TITLE=Proceedings of the 12th International Conference on Natural Language Generation
Currently, there is little agreement as to how Natural Language Generation (NLG) systems should be evaluated. While there is some agreement regarding automatic metrics, there is a high degree of variation in the way that human evaluation is carried o
Publikováno v:
EMNLP/IJCNLP (1)
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 552-562
STARTPAGE=552;ENDPAGE=562;TITLE=Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 552-562
STARTPAGE=552;ENDPAGE=562;TITLE=Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Traditionally, most data-to-text applications have been designed using a modular pipeline architecture, in which non-linguistic input data is converted into natural language through several intermediate transformations. In contrast, recent neural mod
Autor:
Arthur Câmara, William Thong, Pascal Mettes, Emiel van Miltenburg, Jiaojiao Zhao, Shuo Chen, Maurits van der Goes, Daan Odijk, Tanja Crijns, Sarah Ibrahimi, Yunlu Chen, Thomas Mensink, Devanshu Arya
Publikováno v:
MM 2019-Proceedings of the 27th ACM International Conference on Multimedia
Proceedings of the 27th ACM International Conference on Multimedia, 2196-2198
STARTPAGE=2196;ENDPAGE=2198;TITLE=Proceedings of the 27th ACM International Conference on Multimedia
ACM Multimedia
MM'19: proceedings of the 27th ACM Conference on Multimedia : October 21-25, 2019, Nice, France, 2196-2198
STARTPAGE=2196;ENDPAGE=2198;TITLE=MM'19
Proceedings of the 27th ACM International Conference on Multimedia, 2196-2198
STARTPAGE=2196;ENDPAGE=2198;TITLE=Proceedings of the 27th ACM International Conference on Multimedia
ACM Multimedia
MM'19: proceedings of the 27th ACM Conference on Multimedia : October 21-25, 2019, Nice, France, 2196-2198
STARTPAGE=2196;ENDPAGE=2198;TITLE=MM'19
This demo presents a system for journalists to explore video footage for broadcasts. Daily news broadcasts contain multiple news items that consist of many video shots and searching for relevant footage is a labor intensive task. Without the need for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c0bfd7ac069933c8779e543e3d5cb3c
https://doi.org/10.1145/3343031.3350597
https://doi.org/10.1145/3343031.3350597