Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Emiel Lorist"'
Autor:
Emiel Lorist, Zoe Nieraeth
Publikováno v:
Mathematische Zeitschrift, 301(1)
Mathematische Zeitschrift, 301 (1), 1–35
Mathematische Zeitschrift, 301 (1), 1–35
We prove that scalar-valued sparse domination of a multilinear operator implies vector-valued sparse domination for tuples of quasi-Banach function spaces, for which we introduce a multilinear analogue of the UMD condition. This condition is characte
Autor:
Emiel Lorist
Publikováno v:
Journal of Geometric Analysis, 31(9)
We prove a general sparse domination theorem in a space of homogeneous type, in which a vector-valued operator is controlled pointwise by a positive, local expression called a sparse operator. We use the structure of the operator to get sparse domina
We obtain a sparse domination principle for an arbitrary family of functions $f(x,Q)$, where $x\in {\mathbb R}^n$ and $Q$ is a cube in ${\mathbb R}^n$. When applied to operators, this result recovers our recent works. On the other hand, our sparse do
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b0b836c338d5efe515d9c4eb4dc67957
http://hdl.handle.net/10138/341830
http://hdl.handle.net/10138/341830
Autor:
Nick Lindemulder, Emiel Lorist
Publikováno v:
Banach Journal of Mathematical Analysis, 16(1)
Banach journal of mathematical analysis, 16 (1), Art.Nr. 7
Banach journal of mathematical analysis, 16 (1), Art.Nr. 7
We prove a complex formulation of the real interpolation method, showing that the real and complex interpolation methods are not inherently real or complex. Using this complex formulation, we prove Stein interpolation for the real interpolation metho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::410f189c5a980ccf2a5e9d574fd895ab
View the abstract.
Publikováno v:
American Mathematical Society. Transactions
We prove various extensions of the Coifman–Rubio de Francia–Semmes multiplier theorem to operator-valued multipliers on Banach function spaces. Our results involve a new boundedness condition on sets of operators which we call ℓ r ( ℓ s ) {\e
Autor:
Emiel Lorist, Mark Veraar
Publikováno v:
Analysis & PDE, 14(5)
In this paper we introduce Calder\'on-Zygmund theory for singular stochastic integrals with operator-valued kernel. In particular, we prove $L^p$-extrapolation results under a H\"ormander condition on the kernel. Sparse domination and sharp weighted
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b64cfe590d2dfa297e08607ddbccc74d
http://arxiv.org/abs/1902.10620
http://arxiv.org/abs/1902.10620
Autor:
Emiel Lorist, Zoe Nieraeth
Publikováno v:
Journal of Fourier Analysis and Applications, 25(5)
We give an extension of Rubio de Francia's extrapolation theorem for functions taking values in UMD Banach function spaces to the multilinear limited range setting. In particular we show how boundedness of an $m$-(sub)linear operator \[T:L^{p_1}(w_1^
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c04b4bc7000ccaf93b2a325944a2f19
http://resolver.tudelft.nl/uuid:a055a4de-0e60-44b5-a605-ddaade442bc7
http://resolver.tudelft.nl/uuid:a055a4de-0e60-44b5-a605-ddaade442bc7
Publikováno v:
Publicacions Matemàtiques; Vol. 63, Núm. 1 (2019); p. 155-182
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matematiques, 63(1)
Publ. Mat. 63, no. 1 (2019), 155-182
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matematiques, 63(1)
Publ. Mat. 63, no. 1 (2019), 155-182
We extend Rubio de Francia's extrapolation theorem for functions valued in UMD Banach function spaces, leading to short proofs of some new and known results. In particular we prove Littlewood-Paley-Rubio de Francia-type estimates and boundedness of v
Autor:
Timo S. Hänninen, Emiel Lorist
Publikováno v:
American Mathematical Society. Proceedings, 147(1)
We study the domination of the lattice Hardy--Littlewood maximal operator by sparse operators in the setting of general Banach lattices. We prove that the admissible exponents of the dominating sparse operator are determined by the $q$-convexity of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84a2b2eac2570052c2da9d9d5172b703