Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Emerson de Melo"'
Let $G$ be a finite $p$-group. In this paper we obtain bounds for the exponent of the non-abelian tensor square $G \otimes G$ and of $\nu(G)$, which is a certain extension of $G \otimes G$ by $G \times G$. In particular, we bound $\exp(\nu(G))$ in te
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::12d6067bdeabf1cf47efacb01eaf95bd
http://arxiv.org/abs/2007.10693
http://arxiv.org/abs/2007.10693
Autor:
Emerson de Melo Casagrande, Gláucia Zanetti, Edson Marchiori, Bruno Hochhegger, Anderson Ribeiro de Sales
Publikováno v:
Archivos De Bronconeumologia
Archivos de Bronconeumología
Archivos de Bronconeumología
Autor:
Freitas, Emerson de Melo
Publikováno v:
Repositório Institucional da Universidade Federal do Ceará (UFC)
Universidade Federal do Ceará (UFC)
instacron:UFC
Universidade Federal do Ceará (UFC)
instacron:UFC
This research evaluates the implementation process of the National Curriculum Guidelines (DCNs) Ethnic-racial Relations Education (ERER) and for the afro-Brazilian and African Culture and History Teaching at the Federal Institute from Ceara (IFCE). A
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::6e90d37afdf9da90738ac52be27e5873
http://www.repositorio.ufc.br/handle/riufc/60037
http://www.repositorio.ufc.br/handle/riufc/60037
Let G be a group. The orbits of the natural action of $${{\,\mathrm{Aut}\,}}(G)$$ on G are called automorphism orbits of G, and the number of automorphism orbits of G is denoted by $$\omega (G)$$ . Let G be a virtually nilpotent group such that $$\om
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::729e781d9f030b0ae4de9a381d86a818
Autor:
Pavel Shumyatsky, Emerson de Melo
Publikováno v:
Bulletin of the Australian Mathematical Society. 100:61-67
Let $q$ be a prime and $A$ an elementary abelian group of order at least $q^3$ acting by automorphisms on a finite $q'$-group $G$. It is proved that if $|\gamma_{\infty}(C_{G}(a))|\leq m$ for any $a\in A^{\#}$, then the order of $\gamma_{\infty}(G)$
Autor:
Jhone Caldeira, Emerson de Melo
Publikováno v:
Journal of Algebra. 493:185-193
Let p be a prime. Let A be a finite group and M be a normal subgroup of A such that all elements in A ∖ M have order p. Suppose that A acts on a finite p ′ -group G in such a way that C G ( M ) = 1 . We show that if C G ( x ) is nilpotent for any
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pavel Shumyatsky, Emerson de Melo
Publikováno v:
Proceedings of the American Mathematical Society. 145:3755-3760
Let p p be a prime and A A a finite group of exponent p p acting by automorphisms on a finite p ′ p’ -group G G . Assume that A A has order at least p 3 p^3 and C G ( a ) C_G(a) is nilpotent of class at most c c for any a ∈ A # a\in A^{\#} . It
Let $G$ be a group. The orbits of the natural action of Aut$(G)$ on $G$ are called ``automorphism orbits'' of $G$, and the number of automorphism orbits of $G$ is denoted by $\omega(G)$. We prove that if $G$ is a soluble group with finite rank such t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4d78ec0189e743d301518754db0f0e26
http://arxiv.org/abs/1908.01375
http://arxiv.org/abs/1908.01375
Autor:
Emerson de Melo
Let $q$ be a prime and $A$ a finite $q$-group of exponent $q$ acting by automorphisms on a finite $q'$-group $G$. Assume that $A$ has order at least $q^3$. We show that if $\gamma_{\infty} (C_{G}(a))$ has order at most $m$ for any $a \in A^{\#}$, the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::390e30f804e231d45a1d3f99a757a69e