Zobrazeno 1 - 10
of 4 838
pro vyhledávání: '"Elvin, P"'
Autor:
McCullough, J., Amon, A., Legnani, E., Gruen, D., Roodman, A., Friedrich, O., MacCrann, N., Becker, M. R., Myles, J., Dodelson, S., Samuroff, S., Blazek, J., Prat, J., Honscheid, K., Pieres, A., Ferté, A., Alarcon, A., Drlica-Wagner, A., Choi, A., Navarro-Alsina, A., Campos, A., Malagón, A. A. Plazas, Porredon, A., Farahi, A., Ross, A. J., Rosell, A. Carnero, Yin, B., Flaugher, B., Yanny, B., Sánchez, C., Chang, C., Davis, C., To, C., Doux, C., Brooks, D., James, D. J., Cid, D. Sanchez, Hollowood, D. L., Huterer, D., Rykoff, E. S., Gaztanaga, E., Huff, E. M., Suchyta, E., Sheldon, E., Sanchez, E., Tarsitano, F., Andrade-Oliveira, F., Castander, F. J., Bernstein, G. M., Gutierrez, G., Giannini, G., Tarle, G., Diehl, H. T., Huang, H., Harrison, I., Sevilla-Noarbe, I., Tutusaus, I., Ferrero, I., Elvin-Poole, J., Marshall, J. L., Muir, J., Weller, J., Zuntz, J., Carretero, J., DeRose, J., Frieman, J., Cordero, J., De Vicente, J., García-Bellido, J., Mena-Fernández, J., Eckert, K., Romer, A. K., Bechtol, K., Herner, K., Kuehn, K., Secco, L. F., da Costa, L. N., Paterno, M., Soares-Santos, 21 M., Gatti, M., Raveri, M., Yamamoto, M., Smith, M., Kind, M. Carrasco, Troxel, M. A., Aguena, M., Jarvis, M., Swanson, M. E. C., Weaverdyck, N., Lahav, O., Doel, P., Wiseman, P., Miquel, R., Gruendl, R. A., Cawthon, R., Allam, S., Hinton, S. R., Bridle, S. L., Bocquet, S., Desai, S., Pandey, S., Everett, S., Lee, S., Shin, T., Palmese, A., Conselice, C., Burke, D. L., Buckley-Geer, E., Lima, M., Vincenzi, M., Pereira, M. E. S., Crocce, M., Schubnell, M., Jeffrey, N., Alves, O., Vikram, V., Zhang, Y., Collaboration, DES
Modeling the intrinsic alignment (IA) of galaxies poses a challenge to weak lensing analyses. The Dark Energy Survey is expected to be less impacted by IA when limited to blue, star-forming galaxies. The cosmological parameter constraints from this b
Externí odkaz:
http://arxiv.org/abs/2410.22272
Covariance Neural Networks (VNNs) perform graph convolutions on the covariance matrix of tabular data and achieve success in a variety of applications. However, the empirical covariance matrix on which the VNNs operate may contain many spurious corre
Externí odkaz:
http://arxiv.org/abs/2410.01669
We extend a result of Lopes and Thieullen on sub-actions for smooth Anosov flows to the setting of geodesic flow on locally CAT(-1) spaces. This allows us to use arguments originally due to Croke and Dairbekov to prove a volume rigidity theorem for s
Externí odkaz:
http://arxiv.org/abs/2410.00642
This paper addresses the problem of online network topology inference for expanding graphs from a stream of spatiotemporal signals. Online algorithms for dynamic graph learning are crucial in delay-sensitive applications or when changes in topology o
Externí odkaz:
http://arxiv.org/abs/2409.08660
Covariance-based data processing is widespread across signal processing and machine learning applications due to its ability to model data interconnectivities and dependencies. However, harmful biases in the data may become encoded in the sample cova
Externí odkaz:
http://arxiv.org/abs/2409.08558
Topological Deep Learning (TDL) has emerged as a paradigm to process and learn from signals defined on higher-order combinatorial topological spaces, such as simplicial or cell complexes. Although many complex systems have an asymmetric relational st
Externí odkaz:
http://arxiv.org/abs/2409.08389
This paper introduces a probabilistic approach for tracking the dynamics of unweighted and directed graphs using state-space models (SSMs). Unlike conventional topology inference methods that assume static graphs and generate point-wise estimates, ou
Externí odkaz:
http://arxiv.org/abs/2409.08238
Autor:
Das, Bishwadeep, Isufi, Elvin
Graph filters are a staple tool for processing signals over graphs in a multitude of downstream tasks. However, they are commonly designed for graphs with a fixed number of nodes, despite real-world networks typically grow over time. This topological
Externí odkaz:
http://arxiv.org/abs/2409.07204
Many interventions are both beneficial to initiate and harmful to stop. Traditionally, to determine whether to deploy that intervention in a time-limited way depends on if, on average, the increase in the benefits of starting it outweigh the increase
Externí odkaz:
http://arxiv.org/abs/2408.14691
Autor:
Campos, A., Yin, B., Dodelson, S., Amon, A., Alarcon, A., Sánchez, C., Bernstein, G. M., Giannini, G., Myles, J., Samuroff, S., Alves, O., Andrade-Oliveira, F., Bechtol, K., Becker, M. R., Blazek, J., Camacho, H., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Davis, C., DeRose, J., Diehl, H. T., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Friedrich, O., Gatti, M., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Jarvis, M., Krause, E., Kuropatkin, N., Leget, P. -F., MacCrann, N., McCullough, J., Navarro-Alsina, A., Pandey, S., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Wechsler, R. H., Yanny, B., Zhang, Y., Zuntz, J., Aguena, M., Annis, J., Bacon, D., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lima, M., Lin, H., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Paterno, M., Pereira, M. E. S., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Sanchez, E., Cid, D. Sanchez, Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Vikram, V., Weaverdyck, N.
Characterization of the redshift distribution of ensembles of galaxies is pivotal for large scale structure cosmological studies. In this work, we focus on improving the Self-Organizing Map (SOM) methodology for photometric redshift estimation (SOMPZ
Externí odkaz:
http://arxiv.org/abs/2408.00922