Zobrazeno 1 - 10
of 249
pro vyhledávání: '"Elmoataz Abderrahim"'
In this work we address graph based semi-supervised learning using the theory of the spatial segregation of competitive systems. First, we define a discrete counterpart over connected graphs by using direct analogue of the corresponding competitive s
Externí odkaz:
http://arxiv.org/abs/2211.16030
Publikováno v:
Diagnostic Pathology, Vol 3, Iss Suppl 1, p S17 (2008)
Abstract Efficient use of whole slide imaging in pathology needs automated region of interest (ROI) retrieval and classification, through the use of image analysis and data sorting tools. One possible method for data sorting uses Spectral Analysis fo
Externí odkaz:
https://doaj.org/article/c200f854b445410b83986c99c0f31d37
This paper is devoted to signal processing on point-clouds by means of neural networks. Nowadays, state-of-the-art in image processing and computer vision is mostly based on training deep convolutional neural networks on large datasets. While it is a
Externí odkaz:
http://arxiv.org/abs/2103.16337
In this paper we study continuum limits of the discretized $p$-Laplacian evolution problem on sparse graphs with homogeneous Neumann boundary conditions. This extends the results of [24] to a far more general class of kernels, possibly singular, and
Externí odkaz:
http://arxiv.org/abs/2010.08697
Publikováno v:
In Journal of Computational Science December 2023 74
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we study a nonlocal variational problem which consists of minimizing in $L^2$ the sum of a quadratic data fidelity and a regularization term corresponding to the $L^p$-norm of the nonlocal gradient. In particular, we study convergence
Externí odkaz:
http://arxiv.org/abs/1810.12817
In this paper we study numerical approximations of the evolution problem for the nonlocal $p$-Laplacian operator with homogeneous Neumann boundary conditions on inhomogeneous random convergent graph sequences. More precisely, for networks on converge
Externí odkaz:
http://arxiv.org/abs/1805.01754