Zobrazeno 1 - 10
of 249
pro vyhledávání: '"Elmoataz, Abderrahim"'
In this work we address graph based semi-supervised learning using the theory of the spatial segregation of competitive systems. First, we define a discrete counterpart over connected graphs by using direct analogue of the corresponding competitive s
Externí odkaz:
http://arxiv.org/abs/2211.16030
This paper is devoted to signal processing on point-clouds by means of neural networks. Nowadays, state-of-the-art in image processing and computer vision is mostly based on training deep convolutional neural networks on large datasets. While it is a
Externí odkaz:
http://arxiv.org/abs/2103.16337
In this paper we study continuum limits of the discretized $p$-Laplacian evolution problem on sparse graphs with homogeneous Neumann boundary conditions. This extends the results of [24] to a far more general class of kernels, possibly singular, and
Externí odkaz:
http://arxiv.org/abs/2010.08697
Publikováno v:
In Journal of Computational Science December 2023 74
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we study a nonlocal variational problem which consists of minimizing in $L^2$ the sum of a quadratic data fidelity and a regularization term corresponding to the $L^p$-norm of the nonlocal gradient. In particular, we study convergence
Externí odkaz:
http://arxiv.org/abs/1810.12817
In this paper we study numerical approximations of the evolution problem for the nonlocal $p$-Laplacian operator with homogeneous Neumann boundary conditions on inhomogeneous random convergent graph sequences. More precisely, for networks on converge
Externí odkaz:
http://arxiv.org/abs/1805.01754
In this paper we study numerical approximations of the evolution problem for the nonlocal $p$-Laplacian with homogeneous Neumann boundary conditions. First, we derive a bound on the distance between two continuous-in-time trajectories defined by two
Externí odkaz:
http://arxiv.org/abs/1612.07156