Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Elliot Kaplan"'
Autor:
Alexi Block Gorman, Philipp Hieronymi, Elliot Kaplan, Ruoyu Meng, Erik Walsberg, Zihe Wang, Ziqin Xiong, Hongru Yang
Publikováno v:
Logical Methods in Computer Science, Vol Volume 16, Issue 1 (2020)
Following Chaudhuri, Sankaranarayanan, and Vardi, we say that a function $f:[0,1] \to [0,1]$ is $r$-regular if there is a B\"{u}chi automaton that accepts precisely the set of base $r \in \mathbb{N}$ representations of elements of the graph of $f$. W
Externí odkaz:
https://doaj.org/article/e25ebc4b5310420397123820f56b80e5
Publikováno v:
Fundamenta Mathematicae. 251:131-160
This paper proposes a new setup for studying pairs of structures. This new framework includes many of the previously studied classes of pairs, such as dense pairs of o-minimal structures, lovely pairs, fields with Mann groups, and $H$-structures, but
Publikováno v:
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2019, 372 (7), pp.5199-5241. ⟨10.1090/tran/7876⟩
Transactions of the American Mathematical Society, American Mathematical Society, 2019, 372 (7), pp.5199-5241. ⟨10.1090/tran/7876⟩
We define the field $\mathbb{L}$ of logarithmic hyperseries, construct on $\mathbb{L}$ natural operations of differentiation, integration, and composition, establish the basic properties of these operations, and characterize these operations uniquely
Publikováno v:
HAL
Transseries provide a universal framework for the formal asymptotics of regular solutions to ordinary differential equations at infinity. More general functional equations such as E (x + 1) = exp E (x) may have solutions that grow faster than any ite
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f486db5aba434745eb1820a2e0be9874
https://hal.archives-ouvertes.fr/hal-03196388
https://hal.archives-ouvertes.fr/hal-03196388
Autor:
PHILIP EHRLICH, ELLIOT KAPLAN
Publikováno v:
The Journal of Symbolic Logic. 87:871-871
Autor:
Philip Ehrlich, Elliot Kaplan
In [26], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway's ordered field $\mathbf{No}$ of surreal numbers was brought to the fore and employed to provide necessary and sufficient conditions for an ordered field (ordere
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ceadb78a0f256e1fb961136f1e4eb479
http://arxiv.org/abs/2002.07739
http://arxiv.org/abs/2002.07739
Autor:
PHILIP EHRLICH, ELLIOT KAPLAN
Publikováno v:
The Journal of Symbolic Logic. 83:617-633
In [16], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\bf{No}}$ of surreal numbers was brought to the fore and employed to provide necessary and sufficient conditions for an ordered field to be i
Autor:
Antongiulio Fornasiero, Elliot Kaplan
Let $T$ be a complete, model complete o-minimal theory extending the theory RCF of real closed ordered fields in some appropriate language $L$. We study derivations $\delta$ on models $\mathcal{M}\models T$. We introduce the notion of a $T$-derivatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a2624e68186919fa8ef0f1e6a88e156e
Autor:
Elliot Kaplan, Allen Gehret
Publikováno v:
Notre Dame J. Formal Logic 61, no. 2 (2020), 341-361
We show that the theory $T_{\log}$ of the asymptotic couple of the field of logarithmic transseries is distal. As distal theories are NIP (= the non-independence property), this provides a new proof that $T_{\log}$ is NIP. Finally, we show that $T_{\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c29cee5c98a88e8064ad3cd4f3d2bbf2
The depth of a link measures the minimum height of a resolving tree for the link whose leaves are all unlinks. We show that the depth of the closure of a strictly positive braid word is the length of the word minus the number of distinct letters.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7be2242a3cea6a1b95add9b04dd03a32
http://arxiv.org/abs/1412.1466
http://arxiv.org/abs/1412.1466