Zobrazeno 1 - 10
of 91
pro vyhledávání: '"Ellinas, Demosthenes"'
The parametric maximum likelihood estimation problem is addressed in the context of quantum walk theory for quantum walks on the lattice of integers. A coin action is presented, with the real parameter $\theta$ to be estimated identified with the ang
Externí odkaz:
http://arxiv.org/abs/2202.11846
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Optics Express, Vol. 20, Issue 24, pp. 27198-27211 (2012)
We theoretically study the deterministic generation of photon Fock states on-demand using a protocol based on a Jaynes Cummings quantum random walk which includes damping. We then show how each of the steps of this protocol can be implemented in a lo
Externí odkaz:
http://arxiv.org/abs/1209.0858
Autor:
Jarvis, Peter D., Ellinas, Demosthenes
Using the standard formulation of algebraic random walks (ARWs) via coalgebras, we consider ARWs for co-and Hopf-algebraic structures in the ring of symmetric functions. These derive from different types of products by dualisation, giving the dual pa
Externí odkaz:
http://arxiv.org/abs/1207.5569
Autor:
Ellinas, Demosthenes, Jarvis, Peter
Quantum simulations constructing probability tensors of biological multi-taxa in phylogenetic trees are proposed, in terms of positive trace preserving maps, describing evolving systems of quantum walks with multiple walkers. Basic phylogenetic model
Externí odkaz:
http://arxiv.org/abs/1105.1582
Autor:
Brennen, Gavin K., Ellinas, Demosthenes, Kendon, Viv, Pachos, Jiannis K., Tsohantjis, Ioannis, Wang, Zhenghan
Publikováno v:
Annals of Physics (2009)
The one dimensional quantum walk of anyonic systems is presented. The anyonic walker performs braiding operations with stationary anyons of the same type ordered canonically on the line of the walk. Abelian as well as non-Abelian anyons are studied a
Externí odkaz:
http://arxiv.org/abs/0910.2974
Rules for quantizing the walker+coin parts of a classical random walk are provided by treating them as interacting quantum systems. A quantum optical random walk (QORW), is introduced by means of a new rule that treats quantum or classical noise affe
Externí odkaz:
http://arxiv.org/abs/quant-ph/0611265
Autor:
Ellinas, Demosthenes
Probability measures (quasi probability mass), given in the form of integrals of Wigner function over areas of the underlying phase space, give rise to operator valued probability measures (OVM). General construction methods of OVMs, are investigated
Externí odkaz:
http://arxiv.org/abs/quant-ph/0611278
An integral of the Wigner function of a wavefunction |psi >, over some region S in classical phase space is identified as a (quasi) probability measure (QPM) of S, and it can be expressed by the |psi > average of an operator referred to as the region
Externí odkaz:
http://arxiv.org/abs/quant-ph/0510140
Autor:
Ellinas, Demosthenes
Algebraic random walks (ARW) and quantum mechanical random walks (QRW) are investigated and related. Based on minimal data provided by the underlying bialgebras of functions defined on e. g the real line R, the abelian finite group Z_N, and the canon
Externí odkaz:
http://arxiv.org/abs/quant-ph/0510128