Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Ellen Kirkman"'
Autor:
Alejandro Adem, Tom Halverson, Arun Ram, Efim Zelmanov, Sheila Sundaram, Arturo Pianzola, Ruth Charney, Ellen Kirkman, Rolf Farnsteiner, Alberto Elduque, Konstantina Christodoulopoulou, Sarah Witherspoon, Rosa Orellana, Hélène Barcelo, Daniel Nakano
Publikováno v:
Notices of the American Mathematical Society. 70:1
Publikováno v:
Transformation Groups. 25:1037-1062
We prove a version of a theorem of Auslander for finite group coactions on noetherian graded down-up algebras.
Autor:
Ellen Kirkman, James J. Zhang
Publikováno v:
International Mathematics Research Notices. 2021:9853-9907
We study finite-dimensional semisimple Hopf algebra actions on noetherian connected graded Artin–Schelter regular algebras and introduce definitions of the Jacobian, the reflection arrangement, and the discriminant in a noncommutative setting.
Publikováno v:
Journal of Algebra. 540:234-273
We establish a version of Knorrer's Periodicity Theorem in the context of noncommutative invariant theory. Namely, let A be a left noetherian AS-regular algebra, let f be a normal and regular element of A of positive degree, and take B = A / ( f ) .
Publikováno v:
Journal of Noncommutative Geometry. 13:87-114
We continue our study of the McKay Correspondence for grading preserving actions of semisimple Hopf algebras H on (noncommutative) Artin-Schelter regular algebras A. Here, we establish correspondences between module categories over A^H, over A\#H, an
Publikováno v:
Canadian Journal of Mathematics
For a finite-dimensional Hopf algebra $A$, the McKay matrix $M_V$ of an $A$-module $V$ encodes the relations for tensoring the simple $A$-modules with $V$. We prove results about the eigenvalues and the right and left (generalized) eigenvectors of $M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5278be7c480cc5705aa88072e4f79d1a
http://arxiv.org/abs/2007.05510
http://arxiv.org/abs/2007.05510
Publikováno v:
Journal of Algebra. 487:60-92
We study homological properties and rigidity of group coactions on Artin–Schelter regular algebras.
We present two noncommutative algebras over a field of characteristic zero that each posses a family of actions by cyclic groups of order $2n$, represented in $n \times n$ matrices, requiring generators of degree $3n$.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5ba2a5bab646e9fdc448b753ea9933c
http://arxiv.org/abs/1907.06761
http://arxiv.org/abs/1907.06761
For each nontrivial semisimple Hopf algebra $H$ of dimension sixteen over $\mathbb{C}$, the smallest dimension inner-faithful representation of $H$ acting on a quadratic AS regular algebra $A$ of dimension 2 or 3, homogeneously and preserving the gra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8dd056d8eb69926b92cb6546196c266b
http://arxiv.org/abs/1907.06763
http://arxiv.org/abs/1907.06763
Autor:
Ellen Kirkman
Publikováno v:
Recent Developments in Representation Theory. :25-50