Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Elisandra Gloss"'
Autor:
Elisandra Gloss
Publikováno v:
Electronic Journal of Differential Equations, Vol 2010, Iss 61,, Pp 1-23 (2010)
We study the existence and concentration of positive solutions for the quasilinear elliptic equation $$ -varepsilon^2u'' -varepsilon^2(u^2)''u+V(x) u = h(u) $$ in $mathbb{R}$ as $varepsilono 0$, where the potential $V:mathbb{R}o mathbb{R}$ has a posi
Externí odkaz:
https://doaj.org/article/084821a661c1410ca68f1c7b3fe3886d
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 54
Publikováno v:
Mathematische Nachrichten. 293:1094-1109
In this paper we deal with the following class of quasilinear elliptic problems −Δpu=λ|u|p−2u+u+p∗−1+g(x,u+)+f(x)inΩ,u=0on∂Ω,where 1≤p
Publikováno v:
Journal of Mathematical Analysis and Applications. 463:810-831
In this paper we prove the existence of a nontrivial τ-antisymmetric solution for the following system { − Δ u + u = | u | 2 p − 2 u + β ( x ) | v | p | u | p − 2 u , in R N − Δ v + ω 2 v = | v | 2 p − 2 v + β ( x ) | u | p | v | p
Publikováno v:
Journal of Differential Equations. 263:3550-3580
We study the existence and nonexistence of nonzero solutions for the following class of quasilinear Schrodinger equations: − Δ u + V ( x ) u + κ 2 [ Δ ( u 2 ) ] u = h ( u ) , x ∈ R N , where κ > 0 is a parameter, V ( x ) is a continuous poten
We consider $$\varepsilon $$-perturbed nonlinear Schrodinger equations of the form $$\begin{aligned} - \varepsilon ^2\Delta u + V(x)u = Q(x)f(u) \quad \text {in } \mathbb {R}^2, \end{aligned}$$where V and Q behave like $$(1+|x|)^{-\alpha }$$ with $$\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b47e2fab1b6f0aa7ac27e03e691955eb
https://hdl.handle.net/11380/1194564
https://hdl.handle.net/11380/1194564
Publikováno v:
Scopus-Elsevier
In this paper we study the existence of weak positive solutions for the following class of quasilinear Schrödinger equations −Δu + V(x)u − [Δ(u2)]u = h(u) in ℝN, where h satisfies some “mountain-pass” type assumptions and V is a nonnegat
Autor:
Elisandra Gloss
Publikováno v:
Journal of Mathematical Analysis and Applications. 371:465-484
We study existence and concentration of positive solutions for quasilinear elliptic equations of the form − e 2 Δ u − e 2 Δ ( u 2 ) u + V ( x ) u = h ( u ) in R N , N ⩾ 3 , as e → 0 , where the potential V : R N → R has a positive infimum
Autor:
Elisandra Gloss
Publikováno v:
Advanced Nonlinear Studies. 10:273-296
We study existence and asymptotic behavior of positive solutions for quasilinear elliptic equations of the form -εpΔpv + V(x)|v|p-2v = f(v) in ℝN, 1 < p < N, as ε → 0. The potential V : ℝN → ℝ has a positive infimum, inf∂ΩV > infΩ V