Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Elisabetta Barletta"'
Publikováno v:
AppliedMath, Vol 4, Iss 1, Pp 225-249 (2024)
We study the random flow, through a thin cylindrical tube, of a physical quantity of random density, in the presence of random sinks and sources. We model convection in terms of the expectations of the flux and density and solve the initial value pro
Externí odkaz:
https://doaj.org/article/dfcc2d81a040421ca3b0054c0608f539
Publikováno v:
Axioms, Vol 12, Iss 4, p 329 (2023)
On any strictly pseudoconvex CR manifold M, of CR dimension n, equipped with a positively oriented contact form θ, we consider natural ϵ-contractions, i.e., contractions gϵM of the Levi form Gθ, such that the norm of the Reeb vector field T of (M
Externí odkaz:
https://doaj.org/article/685d4f649122486498200df1a27ac82e
Publikováno v:
Mathematics, Vol 10, Iss 3, p 371 (2022)
Beltrami equations L¯t(g)=μ(·,t)Lt(g) on S3 (where Lt, |t|<1, are the Rossi operators i.e., Lt spans the globally nonembeddable CR structure H(t) on S3 discovered by H. Rossi) are derived such that to describe quasiconformal mappings f:S3→N⊂C2
Externí odkaz:
https://doaj.org/article/5fd4d9c356944a6ea1ea35e74297dc24
Publikováno v:
Mathematics, Vol 9, Iss 4, p 333 (2021)
We study the semi-Riemannian geometry of the foliation F of an indefinite locally conformal Kähler (l.c.K.) manifold M, given by the Pfaffian equation ω=0, provided that ∇ω=0 and c=∥ω∥≠0 (ω is the Lee form of M). If M is conformally flat
Externí odkaz:
https://doaj.org/article/b34de3a63fa841209b300a9dce73420c
Publikováno v:
Symmetry, Vol 12, Iss 10, p 1669 (2020)
We solve the boundary value problem for Einstein’s gravitational field equations in the presence of matter in the form of an incompressible perfect fluid of density ρ and pressure field p(r) located in a ball r≤r0. We find a 1-parameter family o
Externí odkaz:
https://doaj.org/article/d47403d132ca4107858786e7fe9bf784
Publikováno v:
Axioms, Vol 9, Iss 2, p 48 (2020)
We review several results in the theory of weighted Bergman kernels. Weighted Bergman kernels generalize ordinary Bergman kernels of domains Ω ⊂ C n but also appear locally in the attempt to quantize classical states of mechanical systems whose cl
Externí odkaz:
https://doaj.org/article/d915bae5a03c45a9a706fe2a42d1764e
Autor:
Elisabetta Barletta
Publikováno v:
Le Matematiche, Vol 61, Iss 2, Pp 301-316 (2006)
We obtain a conceptually new differential geometric proof of P. F. Klembeck’s result (cf. [9]) that the holomorphic sectional curvature k g (z ) of the Bergman metric of a strictly pseudoconvex domain Ω ⊂ ℂ n approaches −4/(n + 1) (the const
Externí odkaz:
https://doaj.org/article/9d794d1d5b7f49d993f6d89e848d8cbd
Autor:
Elisabetta Barletta, Sorin Dragomir
Publikováno v:
Le Matematiche, Vol 50, Iss 2, Pp 237-249 (1995)
We adopt the methods of pseudohermitian geometry (cf. [16]) to study the tangent sphere bundle U(M) over a Riemannian manifold M. If M is an elliptic space form of sectional curvature 1 then U(M) is shown to be globally pseudo-Einstein (in the sense
Externí odkaz:
https://doaj.org/article/f89656442f4b48c9b47b19154bd531b6
Publikováno v:
Complex Variables and Elliptic Equations. 68:237-254
Publikováno v:
Mathematics, Vol 9, Iss 333, p 333 (2021)
Mathematics
Volume 9
Issue 4
Mathematics
Volume 9
Issue 4
We study the semi-Riemannian geometry of the foliation F of an indefinite locally conformal Kähler (l.c.K.) manifold M, given by the Pfaffian equation ω=0, provided that ?∇ω=0 and c=∥ω∥≠0 (ω is the Lee form of M). If M is conformally fla