Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Elisabeth Bouscaren"'
Publikováno v:
Logic Colloquium 2000: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, held in Paris, France, July 23–31, 2000
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::38d5cd5b03463122b6bcfc8390353dde
https://doi.org/10.1017/9781316755884.003
https://doi.org/10.1017/9781316755884.003
Publikováno v:
Proceedings of the London Mathematical Society
Proceedings of the London Mathematical Society, London Mathematical Society, 2018, 116 (1), pp.182-208. ⟨10.1112/plms.12076⟩
Proceedings of the London Mathematical Society, London Mathematical Society, 2018, 116 (1), pp.182-208. ⟨10.1112/plms.12076⟩
We here aim to complete our model-theoretic account of the function field Mordell-Lang conjecture, avoiding appeal to dichotomy theorems for Zariski geometries, where we now consider the general case of semiabelian varieties. The main result is a red
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a53336b249be43354dc48ef5dbf0ce3
Publikováno v:
Journal of Mathematical Logic
Journal of Mathematical Logic, World Scientific Publishing, 2016, 16 (01), pp.1650001. ⟨10.1142/S021906131650001X⟩
Journal of Mathematical Logic, World Scientific Publishing, 2016, 16 (01), pp.1650001. ⟨10.1142/S021906131650001X⟩
We give a reduction of the function field Mordell–Lang conjecture to the function field Manin–Mumford conjecture, for abelian varieties, in all characteristics, via model theory, but avoiding recourse to the dichotomy theorems for (generalized) Z
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8fef9080edd6537f2e6d7038b168e9f
https://hal.archives-ouvertes.fr/hal-02329870
https://hal.archives-ouvertes.fr/hal-02329870
Autor:
Ehud Hrushovski, Elisabeth Bouscaren
Publikováno v:
Annals of Pure and Applied Logic. 142:296-320
It follows directly from Shelah’s structure theory that if T is a classifiable theory, then the isomorphism type of any model of T is determined by the theory of that model in the language L ∞ , ω 1 ( d . q . ) . Leo Harrington asked if one coul
Autor:
Elisabeth Bouscaren, Françoise Delon
Publikováno v:
J. Symbolic Logic 67, iss. 1 (2002), 239-259
We give a complete description of minimal groups infinitely definable in separably closed fields of finite degree of imperfection. In particular we answer positively the question of the existence of such a group with infinite transcendence degree (i.
Autor:
Elisabeth Bouscaren, F. Delon
Publikováno v:
Transactions of the American Mathematical Society. 354:945-966
We consider the groups which are infinitely definable in separably closed fields of finite degree of imperfection. We prove in particular that no new definable groups arise in this way: we show that any group definable in such a field L is definably
Autor:
Elisabeth Bouscaren, Ehud Hrushovski
Publikováno v:
Journal of Symbolic Logic. 59:579-595
We know from [H1], [H2] that in a stable theory, given a nontrivial locally modular regular type q, one can define a group with generic domination equivalent to q, and that the dependence relation on q can be analyzed in terms of this group. In a sta
Publikováno v:
Journal of Symbolic Logic. 58:1302-1322
We consider the question of when, given a subset A of M, the setwise stabilizer of the group of automorphisms induces a closed subgroup on Sym(A). We define s-homogeneity to be the analogue of homogeneity relative to strong embeddings and show that a
Autor:
Thomas Blossier, Elisabeth Bouscaren
Publikováno v:
J. Symbolic Logic
J. Symbolic Logic, 2010, 75 (1), pp.25-50
J. Symbolic Logic 75, iss. 1 (2010), 25-50
J. Symbolic Logic, 2010, 75 (1), pp.25-50
J. Symbolic Logic 75, iss. 1 (2010), 25-50
We show that ifG is a strongly minimalfinitely axiomatizable group, the division ring of quasi-endomorphismsofGmustbeaninfinitefinitelypresentedring. §1. Introduction. Questions aboutfinite axiomatizability offirst order theories are nearly as old a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e734d721beab2a69545fc555b5cd6b79
https://hal.archives-ouvertes.fr/hal-00865689
https://hal.archives-ouvertes.fr/hal-00865689
Autor:
Elisabeth Bouscaren
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783540648635
In this informal presentation we introduce some of the main definitions and results which form the basis of model theory. We have chosen an approach adapted to the particular subject of this book. For proofs and formal definitions as well as for all
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2e5ec3068d01ce5455c62a68126424d5
https://doi.org/10.1007/978-3-540-68521-0_1
https://doi.org/10.1007/978-3-540-68521-0_1