Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Elisa Lorenzo García"'
Autor:
Kristin E. Lauter, Rachel Newton, Marco Streng, Pınar Kılıçer, Ekin Ozman, Elisa Lorenzo García
Publikováno v:
16 pages, some minor and major updates. 2016
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2020, 148 (7), pp.2843-2861. ⟨10.1090/proc/14975⟩
Proceedings of the American Mathematical Society, 2020, 148 (7), pp.2843-2861. ⟨10.1090/proc/14975⟩
Proceedings of the american mathematical society, 148(7), 2843-2861
Proceedings of the American Mathematical Society, 148(7), 2843-2861. American Mathematical Society (AMS)
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2020, 148 (7), pp.2843-2861. ⟨10.1090/proc/14975⟩
Proceedings of the American Mathematical Society, 2020, 148 (7), pp.2843-2861. ⟨10.1090/proc/14975⟩
Proceedings of the american mathematical society, 148(7), 2843-2861
Proceedings of the American Mathematical Society, 148(7), 2843-2861. American Mathematical Society (AMS)
We give bounds on the primes of geometric bad reduction for curves of genus three of primitive CM type in terms of the CM orders. In the case of genus one, there are no primes of geometric bad reduction because CM elliptic curves are CM abelian varie
Autor:
Elisa Lorenzo García
Publikováno v:
Journal of the Mathematical Society of Japan
Journal of the Mathematical Society of Japan, 2022, 74 (2), pp.403-426. ⟨10.2969/jmsj/83418341⟩
Journal of the Mathematical Society of Japan, 2022, 74 (2), pp.403-426. ⟨10.2969/jmsj/83418341⟩
In this paper we give a passage formula between different invariants of genus 3 hyperelliptic curves: in particular between Tsuyumine and Shioda invariants. This is needed to get modular expressions for Shioda invariants, that is, for example, useful
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23ba721f6acfc449f5210d482a38dd77
https://hal.science/hal-03672000
https://hal.science/hal-03672000
Publikováno v:
Canadian Journal of Mathematics
Canadian Journal of Mathematics, University of Toronto Press, 2020, 72 (2), pp.480-504. ⟨10.4153/S0008414X18000111⟩
Canadian journal of mathematics-Journal canadien de mathematiques, 72(2), 480-504
Canadian Journal of Mathematics, 72(2), 480-504. Canadian Mathematical Society
Canadian Journal of Mathematics, 2020, 72 (2), pp.480-504. ⟨10.4153/S0008414X18000111⟩
Canadian Journal of Mathematics, University of Toronto Press, 2020, 72 (2), pp.480-504. ⟨10.4153/S0008414X18000111⟩
Canadian journal of mathematics-Journal canadien de mathematiques, 72(2), 480-504
Canadian Journal of Mathematics, 72(2), 480-504. Canadian Mathematical Society
Canadian Journal of Mathematics, 2020, 72 (2), pp.480-504. ⟨10.4153/S0008414X18000111⟩
We give a bound on the primes dividing the denominators of invariants of Picard curves of genus 3 with complex multiplication. Unlike earlier bounds in genus 2 and 3, our bound is based, not on bad reduction of curves, but on a very explicit type of
Publikováno v:
Algebra & Number Theory
Algebra & Number Theory, 2021, 15 (6), pp.1429-1468. ⟨10.2140/ant.2021.15.1429⟩
Algebra & Number Theory, Mathematical Sciences Publishers 2021, 15 (6), pp.1429-1468. ⟨10.2140/ant.2021.15.1429⟩
Algebra & Number Theory, 2021, 15 (6), pp.1429-1468. ⟨10.2140/ant.2021.15.1429⟩
Algebra & Number Theory, Mathematical Sciences Publishers 2021, 15 (6), pp.1429-1468. ⟨10.2140/ant.2021.15.1429⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4577a56161d03155a1d960be179fe019
https://hal.science/hal-03412558
https://hal.science/hal-03412558
Publikováno v:
Experimental Mathematics
Experimental Mathematics, In press, pp.1-23. ⟨10.1080/10586458.2021.1926008⟩
Experimental Mathematics, Taylor & Francis, In press, ⟨10.1080/10586458.2021.1926008⟩
Experimental Mathematics, In press, pp.1-23. ⟨10.1080/10586458.2021.1926008⟩
Experimental Mathematics, Taylor & Francis, In press, ⟨10.1080/10586458.2021.1926008⟩
Let $\phi:\,X\rightarrow Y$ be a (possibly ramified) cover between two algebraic curves of positive genus. We develop tools that may identify the Prym variety of $\phi$, up to isogeny, as the Jacobian of a quotient curve $C$ in the Galois closure of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d5d487a8ef3394c8a7eb6d380f77e4d5
https://hal.science/hal-02512858/document
https://hal.science/hal-02512858/document
This volume contains the proceedings of the 18th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory, held (online) from May 31 to June 4, 2021. For over thirty years, the biennial international conference AGC$^2$T (Arit
This volume includes articles spanning several research areas in number theory, such as arithmetic geometry, algebraic number theory, analytic number theory, and applications in cryptography and coding theory. Most of the articles are the results of
Autor:
Maike Massierer, Pınar Kılıçer, Sorina Ionica, Kristin E. Lauter, Adelina Manzateanu, Elisa Lorenzo García, Christelle Vincent
Publikováno v:
Ionica, S, Kılıçer, P, Lauter, K, Lorenzo García, E, Mânzăţeanu, A, Massierer, M & Vincent, C 2019, ' Modular invariants for genus 3 hyperelliptic curves ', Research in Number Theory, vol. 5, no. 1, 9 . https://doi.org/10.1007/s40993-018-0146-6
Research in Number Theory
Research in Number Theory, Springer, 2019, 5 (1), pp.article n°9. ⟨10.1007/s40993-018-0146-6⟩
Research in Number Theory, 5(9). Springer Nature
Research in Number Theory, 2019, 5 (1), pp.article n°9. ⟨10.1007/s40993-018-0146-6⟩
Research in Number Theory
Research in Number Theory, Springer, 2019, 5 (1), pp.article n°9. ⟨10.1007/s40993-018-0146-6⟩
Research in Number Theory, 5(9). Springer Nature
Research in Number Theory, 2019, 5 (1), pp.article n°9. ⟨10.1007/s40993-018-0146-6⟩
International audience; In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary oc-tics to Siegel modular forms of genus 3. We use this connection to show that certain mod
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14e75103be007695945ede53c183bec8
https://research-information.bris.ac.uk/en/publications/ce584891-be3c-47ec-ac6a-3d9ce61c0087
https://research-information.bris.ac.uk/en/publications/ce584891-be3c-47ec-ac6a-3d9ce61c0087
Publikováno v:
Mathematics of Computation
Mathematics of Computation, American Mathematical Society, In press, 〈10.1090/mcom/3317〉
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Mathematics of Computation, American Mathematical Society, 2018, 88 (315), pp.421-438. ⟨10.1090/mcom/3317⟩
Mathematics of Computation, 2018, 88 (315), pp.421-438. ⟨10.1090/mcom/3317⟩
Mathematics of Computation, American Mathematical Society, In press, 〈10.1090/mcom/3317〉
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Mathematics of Computation, American Mathematical Society, 2018, 88 (315), pp.421-438. ⟨10.1090/mcom/3317⟩
Mathematics of Computation, 2018, 88 (315), pp.421-438. ⟨10.1090/mcom/3317⟩
International audience; Given a smooth curve defined over a field $k$ that admits a non-singular plane model over $\overline{k}$, a fixed separable closure of $k$, it does not necessarily have a non-singular plane model defined over the field $k$. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6288ff049966089971086bf0e2eecb83
https://ddd.uab.cat/record/240667
https://ddd.uab.cat/record/240667
Publikováno v:
Arithmetic, Geometry, Cryptography and Coding Theory
Arithmetic, Geometry, Cryptography and Coding Theory, Jun 2019, Marseille, France
Arithmetic, Geometry, Cryptography and Coding Theory, Jun 2019, Marseille, France
Let C/K: F = 0 be a smooth plane quartic over a complete discrete valuation field K. In a previous paper the authors togetehr with Q. Liu give various characterizations of the reduction (i.e. non-hyperelliptic genus 3 curve, hyperelliptic genus 3 cur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04bef0e7ba7dd5acae6113b89e35f673