Zobrazeno 1 - 10
of 200
pro vyhledávání: '"Elias M. Stein"'
We show that the discrete Hardy-Littlewood maximal functions associated with the Euclidean balls in $\mathbb Z^d$ with dyadic radii have bounds independent of the dimension on $\ell^p(\mathbb Z^d)$ for $p\in[2, \infty]$.
Comment: 25 pages, no fi
Comment: 25 pages, no fi
Externí odkaz:
http://arxiv.org/abs/1812.00154
Autor:
Elias M. Stein, Guido Weiss
The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to
Autor:
Elias M. Stein
This book has as its subject the boundary value theory of holomorphic functions in several complex variables, a topic that is just now coming to the forefront of mathematical analysis. For one variable, the topic is classical and rather well understo
Autor:
Fredric Jameson, Jürgen Moser, Robert M. May, J. Milnor, C.W.J. Grange, Sidney Verba, Joseph Campbell, Edward O. Wilson, Robert H. MacArthur, Gabriel A. Almond, M. Hatanaka, George C. Williams, Elias M. Stein, Joseph R. Strayer
Publikováno v:
A Century in Books
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::599d45cff0e8e118e387fffb589a18a5
https://doi.org/10.2307/j.ctv1wmz43x.13
https://doi.org/10.2307/j.ctv1wmz43x.13
ℓp(Zd)-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates
Publikováno v:
Journal of Functional Analysis. 277:2471-2521
We prove l p ( Z d ) bounds, for p ∈ ( 1 , ∞ ) , of discrete maximal functions corresponding to averaging operators and truncated singular integrals of Radon type, and their applications to pointwise ergodic theory. Our new approach is based on a
Publikováno v:
American Journal of Mathematics. 141:587-905
Publikováno v:
Geometric Aspects of Harmonic Analysis ISBN: 9783030720575
This is a survey article about recent developments in dimension-free estimates for maximal functions corresponding to the Hardy–Littlewood averaging operators associated with convex symmetric bodies in \(\mathbb R^d\) and \(\mathbb Z^d\).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b47e662924001d15699a3aac8bab1acb
https://doi.org/10.1007/978-3-030-72058-2_3
https://doi.org/10.1007/978-3-030-72058-2_3
Autor:
Elias M. Stein, Loredana Lanzani
Publikováno v:
Geometric Aspects of Harmonic Analysis ISBN: 9783030720575
We survey recent work and announce new results concerning two singular integral operators whose kernels are holomorphic functions of the output variable, specifically the Cauchy–Leray integral and the Cauchy–Szegő projection associated to variou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b785394938477b035e13cd658d53407
https://doi.org/10.1007/978-3-030-72058-2_14
https://doi.org/10.1007/978-3-030-72058-2_14
Autor:
Elias M. Stein
This chapter describes some results concerning oscillatory integrals and, in particular, their application to Radon-like transforms. It briefly discusses three classes of oscillatory integrals. The first class consists of maximal oscillatory integral
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c9e72bbdbc4f01046a835f6efb0d5c20
https://doi.org/10.1201/9780429332838-33
https://doi.org/10.1201/9780429332838-33
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783030360191
We show that the discrete Hardy–Littlewood maximal functions associated with the Euclidean balls in \(\mathbb Z^d\) with dyadic radii have bounds independent of the dimension on \(\ell ^p(\mathbb Z^d)\) for p ∈ [2, ∞].
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2190c2ee870286a751eacf9a473ca2a4
https://doi.org/10.1007/978-3-030-36020-7_8
https://doi.org/10.1007/978-3-030-36020-7_8