Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Elgueta, Josep"'
Autor:
Elgueta, Josep
Publikováno v:
J. Aust. Math. Soc. 116 (2024) 331-362
A notion of {\em normal submonoid} of a monoid $M$ is introduced that generalizes the normal subgroups of a group. When ordered by inclusion, the set $\mathsf{NorSub}(M)$ of normal submonoids of $M$ is a complete lattice. Joins are explicitly describ
Externí odkaz:
http://arxiv.org/abs/2210.08546
Autor:
Elgueta, Josep
The groupoid of finite sets has a "canonical" structure of a symmetric 2-rig with the sum and product respectively given by the coproduct and product of sets. This 2-rig $\widehat{\mathbb{F}\mathbb{S} et}$ is just one of the many non-equivalent categ
Externí odkaz:
http://arxiv.org/abs/2004.08684
Autor:
Elgueta, Josep
Let $\widehat{\mathbb{F}\mathbb{S}et}$ be the groupoid of finite sets and bijections between them equipped with the canonical symmetric rig category structure given by the disjoint union and the cartesian product of finite sets. We prove that the cat
Externí odkaz:
http://arxiv.org/abs/1910.08757
Autor:
Elgueta, Josep
Publikováno v:
In Journal of Pure and Applied Algebra November 2021 225(11)
We prove that the theory of representations of a finite 2-group $\mathbb{G}$ in Baez-Crans 2-vector spaces over a field $k$ of characteristic zero essentially reduces to the theory of $k$-linear representations of the group of isomorphism classes of
Externí odkaz:
http://arxiv.org/abs/1607.04986
Autor:
ELGUETA, JOSEP
Publikováno v:
Journal of the Australian Mathematical Society; Jun2024, Vol. 116 Issue 3, p331-362, 32p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Elgueta, Josep
By a 2-group we mean a groupoid equipped with a weakened group structure. It is called split when it is equivalent to the semidirect product of a discrete 2-group and a one-object 2-group. By a permutation 2-group we mean the 2-group $\mathbb{S}ym(\m
Externí odkaz:
http://arxiv.org/abs/1308.2485
Autor:
Elgueta, Josep
Publikováno v:
J. Algebra 351(1) (2012), 319-349
We explicitly compute the 2-group of self-equivalences and (homotopy classes of) chain homotopies between them for any {\it split} chain complex $A_{\bullet}$ in an arbitrary $\kb$-linear abelian category ($\kb$ any commutative ring with unit). In pa
Externí odkaz:
http://arxiv.org/abs/1012.1964
Autor:
Elgueta, Josep
Publikováno v:
Advances in Mathematics 227 (2011) 170-209
The regular representation of an essentially finite 2-group $\mathbb{G}$ in the 2-category $\mathbf{2Vect}_k$ of (Kapranov and Voevodsky) 2-vector spaces is defined and cohomology invariants classifying it computed. It is next shown that all hom-cate
Externí odkaz:
http://arxiv.org/abs/0907.0978