Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Elgendi, S. G."'
Autor:
Elgendi, S. G.
In this paper, studying the inverse problem, we establish a curvature compatibility condition on a spherically symmetric Finsler metric. As an application, we characterize the spherically symmetric metrics of scalar curvature. We construct a Berwald
Externí odkaz:
http://arxiv.org/abs/2407.03855
The present work is devoted to investigate anisotropic conformal transformation of conic pseudo-Finsler surfaces $(M,F)$, that is, $ F(x,y)\longmapsto \overline{F}(x,y)=e^{\phi(x,y)}F(x,y)$, where the function $\phi(x,y)$ depends on both position $x$
Externí odkaz:
http://arxiv.org/abs/2404.15659
For a Finsler metric $F$, we introduce the notion of $F$-covariant coefficients $H_i$ of the geodesic spray of $F$ (Def. 3.1). We study some geometric consequences concerning the objects $H_i$. If the $F$-covariant coefficients $H_i$ are written in t
Externí odkaz:
http://arxiv.org/abs/2404.07995
Autor:
Elgendi, S. G.
Publikováno v:
published Online in Int. J. Geom. Methods Mod. Phys. (2021)
In this paper, as an application of the inverse problem of calculus of variations, we investigate two compatibility conditions on the spherically symmetric Finsler metrics. By making use of these conditions, we focus our attention on the Landsberg sp
Externí odkaz:
http://arxiv.org/abs/2110.07252
Autor:
Elgendi, S. G., Youssef, Nabil L.
In this note, we show that the examples of non Berwaldian Landsberg surfaces with vanishing flag curvature, obtained in \cite{Zhou}, are in fact Berwaldian. Consequently, Bryant's claim is still unverified.
Comment: 4 pages, LaTeX file
Comment: 4 pages, LaTeX file
Externí odkaz:
http://arxiv.org/abs/2103.08550
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Elgendi, S. G.
It is still a long-standing open problem in Finsler geometry, is there any regular Landsberg metric which is not Berwaldian. However, there are non-regular Landsberg metrics which are not Berwladian. The known examples are established by G. S. Asanov
Externí odkaz:
http://arxiv.org/abs/1908.10910
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Soleiman, A., Elgendi, S. G.
The aim of the present paper is to provide an \emph{intrinsic} investigation of special Finsler spaces of $H_{p}$-scalar curvature and of $H_{p}\,$-constant curvature. Characterizations of such spaces are shown. Sufficient condition for Finsler space
Externí odkaz:
http://arxiv.org/abs/1807.02317
Autor:
Elgendi, S. G., Kozma, Laszlo
Publikováno v:
The Journal of Geometric Analysis (2020)
We describe the $(\alpha,\beta)$-metrics whose the $T$-tensor vanishes ($T$-condition) and the $(\alpha,\beta)$-metrics that satisfy the $\sigma T$-condition $\sigma_hT^h_{ijk}=0$, where $\sigma_h=\frac{\partial \sigma}{\partial x^h}$ and $\sigma$ is
Externí odkaz:
http://arxiv.org/abs/1806.02620