Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Eleny-Nicoleta Ionel"'
Autor:
Penka Georgieva, Eleny-Nicoleta Ionel
Publikováno v:
Adv.Math.
Adv.Math., 2021, 391, pp.107972. ⟨10.1016/j.aim.2021.107972⟩
Adv.Math., 2021, 391, pp.107972. ⟨10.1016/j.aim.2021.107972⟩
In this paper we study the Real Gromov-Witten theory of local 3-folds over Real curves. We show that this gives rise to a 2-dimensional Klein TQFT defined on an extension of the category of unorientable surfaces. We use this structure to completely s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0ec0cb3cb732b9d729c23fb210c8d0aa
https://hal.archives-ouvertes.fr/hal-01974736
https://hal.archives-ouvertes.fr/hal-01974736
Autor:
Eleny-Nicoleta Ionel
Publikováno v:
Advances in Mathematics. 281:40-141
In this paper we introduce a notion of symplectic normal crossing divisor V and define the GW invariant of a symplectic manifold X relative to such a divisor. Our definition includes normal crossing divisors from algebraic geometry. The invariants we
Autor:
Eleny-Nicoleta Ionel, Thomas H. Parker
Publikováno v:
Annals of Mathematics. 187
The Gopakumar-Vafa conjecture predicts that the Gromov-Witten invariants of a Calabi-Yau 3-fold can be canonically expressed in terms of integer invariants called BPS numbers. Using the methods of symplectic Gromov-Witten theory, we prove that the Go
Autor:
Thomas H. Parker, Eleny-Nicoleta Ionel
Many moduli spaces that occur in geometric analysis admit "Fredholm-stratified thin compactifications" in the sense of [IP1] and hence admit a relative fundamental class (RFC), also as defined in [IP1]. We extend these results, emphasizing the natura
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90b0f6a160e34064b92b14026c8d5005
Autor:
Thomas H. Parker, Eleny-Nicoleta Ionel
Publikováno v:
Annals of Mathematics. 159:935-1025
In the symplectic category there is a 'connect sum' operation that glues symplectic manifolds by identifying neighborhoods of embedded codimension two submanifolds. This paper establishes a formula for the Gromov-Witten invariants of a symplectic sum
Autor:
Thomas H. Parker, Eleny-Nicoleta Ionel
Publikováno v:
Annals of Mathematics. 157:45-96
We define relative Gromov-Witten invariants of a symplectic manifold relative to a codimension-two symplectic submanifold. These invariants are the key ingredients in the symplectic sum formula of [IP4]. The main step is the construction of a compact
Autor:
Thomas H. Parker, Eleny-Nicoleta Ionel
We define a notion of relative fundamental class that applies to moduli spaces in gauge theory and in symplectic Gromov-Witten theory. For universal moduli spaces over a parameter space, the relative fundamental class specifies an element of the Cech
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4108b9f56ba2c3441df749f9464134bd
Autor:
Eleny-Nicoleta Ionel
Publikováno v:
Inventiones mathematicae. 148:627-658
We show that any degree at least g monomial in descendant or tautological classes vanishes on ℳg,n when g≥2. This generalizes a result of Looijenga and proves a version of Getzler’s conjecture. The method we use is the study of the relative Gro
Autor:
Thomas H. Parker, Eleny-Nicoleta Ionel
Taubes has recently defined Gromov invariants for symplectic four-manifolds and related them to the Seiberg-Witten invariants. Independently, Ruan and Tian defined symplectic invariants based on ideas of Witten. In this note, we show that Taubes' Gro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10902c71c656459b5511253973125cd6
http://arxiv.org/abs/alg-geom/9702008
http://arxiv.org/abs/alg-geom/9702008
Autor:
Thomas H. Parker, Eleny-Nicoleta Ionel
Given a symplectomorphism f of a symplectic manifold X, one can form the `symplectic mapping cylinder' $X_f = (X \times R \times S^1)/Z$ where the Z action is generated by $(x,s,t)\mapsto (f(x),s+1,t)$. In this paper we compute the Gromov invariants
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::48c48e1fec08376afe2b53bab17a1b85