Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Elena Zamaraeva"'
Autor:
Olga A Nev, Elena Zamaraeva, Romain De Oliveira, Ilia Ryzhkov, Lucian Duvenage, Wassim Abou-Jaoudé, Djomangan Adama Ouattara, Jennifer Claire Hoving, Ivana Gudelj, Alistair J P Brown
Publikováno v:
PLoS Computational Biology, Vol 20, Iss 10, p e1012545 (2024)
Establishing suitable in vitro culture conditions for microorganisms is crucial for dissecting their biology and empowering potential applications. However, a significant number of bacterial and fungal species, including Pneumocystis jirovecii, remai
Externí odkaz:
https://doaj.org/article/98034779b1d34ab98454f66a8b7ecf45
Autor:
Elena Zamaraeva, Christopher M. Collins, Dmytro Antypov, Vladimir V. Gusev, Rahul Savani, Matthew S. Dyer, George R. Darling, Igor Potapov, Matthew J. Rosseinsky, Paul G. Spirakis
Crystal Structure Prediction (CSP) is a fundamental computational problem in materials science. Basin-hopping is a prominent CSP method that combines global Monte Carlo sampling to search over candidate trial structures with local energy minimisation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2828c74c9e861da8513e7e4bf9e0f52a
https://doi.org/10.26434/chemrxiv-2023-4fn8j
https://doi.org/10.26434/chemrxiv-2023-4fn8j
Publikováno v:
Information and Computation
A set S of Boolean points is a specifying set for a threshold function f if the only threshold function consistent with f on S is f itself. The minimal cardinality of a specifying set for f is the specification number of f and it is never smaller tha
Autor:
Elena Zamaraeva, Joviša Žunić
A $\{0,1\}$-valued function on a two-dimensional rectangular grid is called threshold if its sets of zeros and ones are separable by a straight line. In this paper we study 2-threshold functions, i.e. functions representable as the conjunction of two
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a35cccb404f3575fd8ee08b87fb1eea5
http://arxiv.org/abs/2007.03986
http://arxiv.org/abs/2007.03986
Autor:
Elena Zamaraeva, Joviša Žunić
A $k$-threshold function on a rectangular grid of size $m \times n$ is the conjunction of $k$ threshold functions on the same domain. In this paper, we focus on the case $k=2$ and show that the number of two-dimensional 2-threshold functions is~$\dfr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b79d66dbcc059be4503a85e0a978f872
http://arxiv.org/abs/2007.03984
http://arxiv.org/abs/2007.03984
Autor:
Elena Zamaraeva
Publikováno v:
Journal of Applied and Industrial Mathematics. 11:130-144
We consider k-threshold functions of n variables, i.e. the functions representable as the conjunction of k threshold functions. For n = 2, k = 2, we give upper bounds for the cardinality of the minimal teaching set depending on the various properties
Autor:
Elena Zamaraeva
Publikováno v:
Гуманитарные науки. Вестник Финансового университета. 6:14-18
Autor:
Elena Zamaraeva
Publikováno v:
Гуманитарные науки. Вестник Финансового университета. 5:61-66
Publikováno v:
Discrete applied mathematics, 2018, Vol.250, pp.16-27 [Peer Reviewed Journal]
DISCRETE APPLIED MATHEMATICS
DISCRETE APPLIED MATHEMATICS
It is known that a positive Boolean function f depending on n variables has at least n + 1 extremal points, i.e. minimal ones and maximal zeros. We show that f has exactly n + 1 extremal points if and only if it is linear read-once. The class of line
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::421f59193bc1c8dad4885d8e469ba1cd
Autor:
Elena Zamaraeva
Let $f$ be a $\{0,1\}$-valued function over an integer $d$-dimensional cube $\{0,1,\dots,n-1\}^d$, for $n \geq 2$ and $d \geq 1$. The function $f$ is called threshold if there exists a hyperplane which separates $0$-valued points from $1$-valued poin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c48b17d8156f72c0f13ea2d302922c87
http://arxiv.org/abs/1502.04340
http://arxiv.org/abs/1502.04340