Zobrazeno 1 - 10
of 144
pro vyhledávání: '"Eleftherakis, G."'
Autor:
Eleftherakis, G. K., Papapetros, E.
The similarity problem is one of the most famous open problems in the theory of $C^*$-algebras. We say that a $C^*$-algebra $\cl A$ satisfies the similarity property ((SP) for short) if every bounded homomorphism $u\colon \cl A\to \cl B(H)$ is simila
Externí odkaz:
http://arxiv.org/abs/2306.07605
We investigate conditions for the extendibility of continuous algebra homomorphisms $\phi$ from the Fourier algebra $A(F)$ of a locally compact group $F$ to the Fourier-Stieltjes algebra $B(G)$ of a locally compact group $G$ to maps between the corre
Externí odkaz:
http://arxiv.org/abs/2302.09573
Publikováno v:
Monatshefte f\"ur Mathematik, 2022
Using techniques from TRO equivalence of masa bimodules we prove various transference results: We show that when $\alpha$ is a group homomorphism which pushes forward the Haar measure of $G$ to a measure absolutely continuous with respect to the Haar
Externí odkaz:
http://arxiv.org/abs/2111.12005
Publikováno v:
Studia Mathematica, 2022
We provide necessary and sufficient conditions for the existence of idempotents of arbitrarily large norms in the Fourier algebra A(G) and the Fourier-Stieltjes algebra B(G) of a locally compact group G. We prove that the existence of idempotents of
Externí odkaz:
http://arxiv.org/abs/2109.12318
Autor:
Eleftherakis, G. K., Papapetros, E.
Rigged modules over an operator algebra are a generalization of Hilbert modules over a $C^{\star}$-algebra. We characterize the rigged modules over an operator algebra $\mathcal A$ which are orthogonally complemented in $C_\infty(\mathcal A),$ the sp
Externí odkaz:
http://arxiv.org/abs/2106.04882
We prove that if $\rho: A(H) \to B(G)$ is a homomorphism between the Fourier algebra of a locally compact group $H$ and the Fourier-Stieltjes algebra of a locally compact group $G$ induced by a mixed piecewise affine map $\alpha : G \to H$, then $\rh
Externí odkaz:
http://arxiv.org/abs/2104.01657
Autor:
Eleftherakis, G. K., Papapetros, E.
We introduce the notion of $\Delta$ and $\sigma\,\Delta-$ pairs for operator algebras and characterise $\Delta-$ pairs through their categories of left operator modules over these algebras. Furthermore, we introduce the notion of $\Delta$-Morita equi
Externí odkaz:
http://arxiv.org/abs/2009.11055
Autor:
Eleftherakis, G. K.
We define a strong Morita-type equivalence $\sim _{\sigma \Delta }$ for operator algebras. We prove that $A\sim _{\sigma \Delta }B$ if and only if $A$ and $B$ are stably isomorphic. We also define a relation $\subset _{\sigma \Delta }$ for operator a
Externí odkaz:
http://arxiv.org/abs/1812.04338
Autor:
Eleftherakis, G. K.
We define a relation < for dual operator algebras. We say that B < A if there exists a projection p in A such that B and pAp are Morita equivalent in our sense. We show that < is transitive, and we investigate the following question: If A < B and B <
Externí odkaz:
http://arxiv.org/abs/1704.04403
Autor:
Eleftherakis, G. K.
In this paper we present some key moments in the history of Morita equivalence for operator algebras.
Comment: This paper has been published in Serdica Mathematical Journal
Comment: This paper has been published in Serdica Mathematical Journal
Externí odkaz:
http://arxiv.org/abs/1608.03143