Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Elefterios Soultanis"'
Publikováno v:
The Journal of Geometric Analysis. 31:7621-7685
We show that, given a metric space$$(\mathrm{Y},\textsf {d} )$$(Y,d)of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure$$\mu $$μon$$\mathrm{Y}$$Ygiving finite mass to bounded sets, the resulting metric measure sp
Publikováno v:
Analysis and Geometry in Metric Spaces, 10, 1, pp. 344-372
Analysis and Geometry in Metric Spaces, 10, 344-372
Analysis and Geometry in Metric Spaces, 10, 344-372
We consider functions with an asymptotic mean value property, known to characterize harmonicity in Riemannian manifolds, in doubling metric measure spaces. We show that the strongly amv-harmonic functions are H\"older continuous for any exponent belo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3104df3834f71e87a554550f6f0d7a7
https://hdl.handle.net/https://repository.ubn.ru.nl/handle/2066/284888
https://hdl.handle.net/https://repository.ubn.ru.nl/handle/2066/284888
Publikováno v:
Proceedings of the American Mathematical Society, 150, 327-343
Proceedings of the American Mathematical Society, 150, 1, pp. 327-343
Proceedings of the American Mathematical Society, 150, 1, pp. 327-343
We construct an isometric embedding from Gigli's abstract tangent module into the concrete tangent module of a space admitting a (weak) Lipschitz differentiable structure, and give two equivalent conditions which characterize when the embedding is an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f0f7acaaefa8eb48cf0d9fa0388a1a6
https://hdl.handle.net/https://repository.ubn.ru.nl/handle/2066/246721
https://hdl.handle.net/https://repository.ubn.ru.nl/handle/2066/246721
Autor:
Elefterios Soultanis
Publikováno v:
Revista Matemática Iberoamericana. 33:951-994
In this paper we study notions of homotopy in the Newtonian space N1,p(X;Y) of Sobolev type maps between metric spaces. After studying the properties and relations of two different notions we prove a compactness result for sequences in homotopy class
Autor:
Elefterios Soultanis
We study the notion of $p$-quasihomotopy in Newtonian classes of mappings and link it to questions concerning lifts of Newtonian maps, under the assumption that the target space is nonpositively curved. Using this connection we prove that every $p$-q
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e242b3bea2d1fc79c125de0b53a10a3e
http://hdl.handle.net/10138/311751
http://hdl.handle.net/10138/311751
Autor:
Paul Creutz, Elefterios Soultanis
We find maximal representatives within equivalence classes of metric spheres. For Ahlfors regular spheres these are uniquely characterized by satisfying the seemingly unrelated notions of Sobolev-to-Lipschitz property, or volume rigidity. We also app
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5f30445ac81cc676fbcb721d0433b5b
Autor:
Elefterios Soultanis
Publikováno v:
Journal of Functional Analysis, 280, 1-22
Journal of Functional Analysis, 280, 8, pp. 1-22
Journal of Functional Analysis, 280, 8, pp. 1-22
We study the relationship between quasi-homotopy and path homotopy for Sobolev maps between manifolds. By employing singular integrals on manifolds we show that, in the critical exponent case, path homotopic maps are quasi-homotopic – and observe t
Publikováno v:
Journal of Functional Analysis. 278:108403
We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove that our notion is consistent
Autor:
Elefterios Soultanis, Pekka Pankka
Publikováno v:
Analysis and Geometry in Metric Spaces, Vol 7, Iss 1, Pp 212-249 (2019)
Using the duality of metric currents and polylipschitz forms, we show that a BLD-mapping $f\colon X\to Y$ between oriented cohomology manifolds $X$ and $Y$ induces a pull-back operator $f^\ast \colon M_{k,loc}(Y) \to M_{k,loc}(X)$ between the spaces
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f5714410e7c3031b72bcdcc1e01da320
Publikováno v:
Journal of mathematical analysis and applications. 402(2):626-634
We extend a theorem of Gehring and Osgood from 1979–relating to the distortion of the quasihyperbolic metric by a quasiconformal mapping between Euclidean domains–to the setting of metric measure spaces of Q -bounded geometry. When the underlying