Zobrazeno 1 - 10
of 135
pro vyhledávání: '"Electrotonic potential"'
Autor:
Alexander G. Volkov, Yuri B. Shtessel
Publikováno v:
Communicative & Integrative Biology, Vol 13, Iss 1, Pp 54-58 (2020)
Plants can communicate with other plants using wireless pathways above and underground. Some examples of these underground communication pathways are: (1) mycorrhizal networks in the soil; (2) the plants’ rhizosphere; (3) acoustic communication; (4
Externí odkaz:
https://doaj.org/article/b400514533aa4f2ba138dd39b8bda041
Autor:
Alexander G. Volkov, Yuri B. Shtessel
Publikováno v:
AIMS Biophysics, Vol 4, Iss 4, Pp 576-595 (2017)
Plants communicate with other plants using different pathways: (1) volatile organic compounds’ (VOC) emission and sensing; (2) mycorrhizal networks in the soil; (3) the plants’ rhizosphere; (4) electrostatic or electromagnetic interactions; (5) r
Externí odkaz:
https://doaj.org/article/6dcd1d09956f453db7f9a398abb0b53c
Autor:
Yuri B. Shtessel, Alexander G. Volkov
Publikováno v:
AIMS Biophysics, Vol 3, Iss 3, Pp 358-379 (2016)
Electrostimulation of electrical networks in plants can induce electrotonic or action potentials propagating along their leaves and stems. Both action and electrotonic potentials play important roles in plant physiology and in signal transduction bet
Externí odkaz:
https://doaj.org/article/fabff018236e4fe2bb1fdd4c9f74b4b4
Autor:
Yuri B. Shtessel, Alexander G. Volkov
Publikováno v:
Communicative & Integrative Biology, Vol 13, Iss 1, Pp 54-58 (2020)
Communicative & Integrative Biology
Communicative & Integrative Biology
Plants can communicate with other plants using wireless pathways above and underground. Some examples of these underground communication pathways are: (1) mycorrhizal networks in the soil; (2) the plants’ rhizosphere; (3) acoustic communication; (4
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alexander G. Volkov
Publikováno v:
Bioelectrochemistry. 125:25-32
The Venus flytrap captures insects with one of the most rapid movements in the plant kingdom. There is a significant difference between properties of electrical signals generated in the Venus flytrap described in literature. Amplitudes of action pote
Publikováno v:
European Heart Journal: Case Reports
Background Cardiac arrhythmias are a serious complication in patients admitted due to intoxication in suicidal attempts. Upon admission, detailed information about the specific kind of intoxication are frequently missing. The differential diagnoses o
Publikováno v:
The Journal of Neuroscience. 38:2796-2808
By synchronizing neuronal activity, electrical transmission influences the coordination, pattern, and/or frequency of firing. In the hemaphroditic marine-snail,Aplysia calfornica, the neuroendocrine bag cell neurons use electrical synapses to synchro
Autor:
Alexander G. Volkov, Yuri B. Shtessel
Publikováno v:
AIMS Biophysics, Vol 3, Iss 3, Pp 358-379 (2016)
Electrostimulation of electrical networks in plants can induce electrotonic or action potentials propagating along their leaves and stems. Both action and electrotonic potentials play important roles in plant physiology and in signal transduction bet
Autor:
Maia I. Volkova, Eunice K. Nyasani, Yuri B. Shtessel, Mariah M.Z. Jackson, Jessenia M. Scott, Devin O. Cohen, Esther A. Greeman, Ariane S. Greenidge, Alexander G. Volkov, Clayton Tuckett
Publikováno v:
Bioelectrochemistry. 113:60-68
Electrostimulation of plants can induce plant movements, activation of ion channels, ion transport, gene expression, enzymatic systems activation, electrical signaling, plant-cell damage, enhanced wound healing, and influence plant growth. Here we fo