Zobrazeno 1 - 10
of 411
pro vyhledávání: '"Elder, G. A."'
Autor:
Elder, G. Griffith, Keating, Kevin
Let $K$ be a local field of characteristic $p>0$ with perfect residue field and let $G$ be a finite $p$-group. In this paper we use Saltman's construction of a generic $G$-extension of rings of characteristic $p$ to construct totally ramified $G$-ext
Externí odkaz:
http://arxiv.org/abs/2308.02775
Autor:
Elder, G. Griffith
We classify the upper ramification breaks of totally ramified nonabelian extensions of degree $p^3$ over a local field of characteristic $p>0$. We find that nonintegral upper ramification breaks can occur for each nonabelian Galois group of order $p^
Externí odkaz:
http://arxiv.org/abs/2303.01984
Autor:
Elder, G. Griffith, Keating, Kevin
Let $L/K$ be a finite Galois extension of local fields. The Hasse-Arf theorem says that if Gal$(L/K)$ is abelian then the upper ramification breaks of $L/K$ must be integers. We prove the following converse to the Hasse-Arf theorem: Let $G$ be a nona
Externí odkaz:
http://arxiv.org/abs/2302.00222
Autor:
Elder, G. Griffith, Keating, Kevin
Let $K$ be a local field of characteristic $p$ and let $L/K$ be a totally ramified Galois extension such that Gal$(L/K)\cong C_{p^n}$. In this paper we find sufficient conditions for $L/K$ to admit a Galois scaffold. This leads to sufficient conditio
Externí odkaz:
http://arxiv.org/abs/2201.08885
Autor:
Elder, G. Griffith, Keating, Kevin
Let $K$ be a local field of characteristic $p$ and let $L/K$ be a totally ramified elementary abelian $p$-extension with a single ramification break $b$. Byott and Elder defined the refined ramification breaks of $L/K$, an extension of the usual rami
Externí odkaz:
http://arxiv.org/abs/1812.11660
Autor:
Stecanella, Priscilla A. Juá, Camargos, Ronaldo S.C., Vieira, Daniel, Domingues, Elder G., Ferreira Filho, Anésio de L.
Publikováno v:
In Renewable Energy November 2022 199:474-485
Autor:
Elder, G. Griffith
Cyclic, ramified extensions $L/K$ of degree $p$ of local fields with residue characteristic $p$ are fairly well understood. Unless $\mbox{char}(K)=0$ and $L=K(\sqrt[p]{\pi_K})$ for some prime element $\pi_K\in K$, they are defined by an Artin-Schreie
Externí odkaz:
http://arxiv.org/abs/1511.05503
Autor:
Ronaldo S. Chacon Camargos, Priscilla A. Jua Stecanella, Daniel Vieira, Livia M. De R. Raggi, Fernando C. Melo, Elder G. Domingues, Anesio De L. Ferreira Filho
Publikováno v:
IEEE Access, Vol 9, Pp 91361-91376 (2021)
This study assesses the technical and financial impacts on voltage levels, peak demand, and technical losses of distribution systems due to the integration of battery energy storage systems (BESSs) associated with photovoltaic distributed generation
Externí odkaz:
https://doaj.org/article/4312b043e0004fdb8502127d2760b3c0
Autor:
Byott, Nigel P., Elder, G. Griffith
Let $L/K$ be a finite Galois, totally ramified $p$-extension of complete local fields with perfect residue fields of characteristic $p>0$. In this paper, we give conditions, valid for any Galois $p$-group $G={Gal}(L/K)$ (abelian or not) and for $K$ o
Externí odkaz:
http://arxiv.org/abs/1308.2092
Let $L/K$ be a finite, totally ramified $p$-extension of complete local fields with residue fields of characteristic $p > 0$, and let $A$ be a $K$-algebra acting on $L$. We define the concept of an $A$-scaffold on $L$, thereby extending and refining
Externí odkaz:
http://arxiv.org/abs/1308.2088