Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Elçin GÖKMEN"'
Autor:
Elçin Gökmen
Publikováno v:
Journal of Taibah University for Science, Vol 15, Iss 1, Pp 218-225 (2021)
In this study, a fractional Bernstein series solution method has been submitted to solve the fractional-order biological population model with one carrying capacity. The numerical method has been implemented by an effective algorithm written on the c
Externí odkaz:
https://doaj.org/article/49a0af5a4b8f464f97d5ca8d8f872442
Autor:
Elçin Gökmen, Osman Rasit Isik
Publikováno v:
Mathematical Sciences. 16:361-371
In this study, we have introduced a fractional series solution method to solve fractional pantograph differential equations numerically. The method is constructed by collocation approach and Bernstein polynomials. Each term of the equation is convert
Autor:
Elçin GÖKMEN, Mehmet SEZER
Publikováno v:
Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Vol 1, Iss 1, Pp 11-23 (2014)
Bu çalışmada, lineer olmayan ikinci mertebe sınır değer probleminin yaklaşık çözümünü elde etmek için bir nümerik yaklaşım önerilmiştir. Bu teknik, temel olarak sıralama noktaları ile birlikte kesilmiş Taylor serisi ve onun matr
Externí odkaz:
https://doaj.org/article/c0782891cb6b47958e086908bd184589
Autor:
Elçin Gökmen, Mehmet Sezer
Publikováno v:
Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Vol 1, Iss 1, Pp 11-23 (2013)
In this study, a numerical approach is proposed to obtain approximate solutions of nonlinear system of secondorder boundary value problem. This technique is essentially based on the truncated Taylor series and its matrix representations with collocat
Externí odkaz:
https://doaj.org/article/60c4c680cd1745aa9a52fcffa65b6e93
Autor:
Elçin GÖKMEN, Mehmet SEZER
Publikováno v:
Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Vol 1, Iss 1, Pp 11-23 (2013)
Bu çalışmada, lineer olmayan ikinci mertebe sınır değer probleminin yaklaşık çözümünü elde etmek için bir nümerik yaklaşım önerilmiştir. Bu teknik, temel olarak sıralama noktaları ile birlikte kesilmiş Taylor serisi ve onun matr
Externí odkaz:
https://doaj.org/article/a17b617dee9947138fc0d0ef05d1a5e4
Autor:
Elçin Gökmen, Mehmet Sezer
Publikováno v:
Ain Shams Engineering Journal, Vol 4, Iss 1, Pp 117-125 (2013)
A Taylor collocation method has been developed to solve the systems of high-order linear differential–difference equations in terms of the Taylor polynomials. Using the Taylor collocation points, this method transforms differential–difference equ
Externí odkaz:
https://doaj.org/article/8cc8d84407384036a053dd2c708e2e31
Autor:
Elçin Gökmen, Elçin Çelik
Publikováno v:
Volume: 23, Issue: 3 403-412
Sakarya University Journal of Science
Sakarya University Journal of Science
In this study, a numerical approach is presented to obtain the approximate solutions of continuous population models for single and interacting species. This method is essentially based on the truncated Taylor series and its matrix representations wi
Autor:
Firdevs Tuba Mavi, Elçin Gökmen
Publikováno v:
Volume: 7, Issue: 2 6-17
Mugla Journal of Science and Technology
Mugla Journal of Science and Technology
The use of mathematics for predicting and analyzing the future has long been a subject of study due to the fact that it is a measurable source. Correct estimation is vital for the business world and its economic society. In this study, by employing t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4175e7b829c5974c8d9438dfc1a033d2
https://dergipark.org.tr/tr/pub/muglajsci/issue/65497/897318
https://dergipark.org.tr/tr/pub/muglajsci/issue/65497/897318
Autor:
Mehmet Sezer, Elçin Gökmen
Publikováno v:
Volume: 6, Issue: 1 1-7
Mugla Journal of Science and Technology
Mugla Journal of Science and Technology
In this work, high order pantograph type linear functional differential equations with hybrid proportional and variable delays is approximately solved by the modified Taylor matrix method. With this method these functional type differential equations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3940907a28887c9ad4dd5cb11ff67f5d
https://hdl.handle.net/20.500.12809/9028
https://hdl.handle.net/20.500.12809/9028
In this paper, a collocation method based on Taylor polynomials is presented to solve the functional delay integro-differential equations with variable bounds. Using this method, we transform the functional equations to a system of linear algebraic e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90df81790b17d5eb6a66cdca786b7f6d
http://hdl.handle.net/20.500.12481/12015
http://hdl.handle.net/20.500.12481/12015