Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Elçi, Eren Metin"'
Autor:
Elci, Eren Metin, Garoni, Timothy M.
We study the autocorrelation time of the size of the cluster at the origin in discrete-time dynamical percolation. We focus on binary trees and high-dimensional tori, and show in both cases that this autocorrelation time is linear in the volume in th
Externí odkaz:
http://arxiv.org/abs/2402.08927
Publikováno v:
Phys. Rev. E 108, 055308 (2023)
The Sweeny algorithm for the $Q$-state random-cluster model in two dimensions is shown to exhibit a rich mixture of critical dynamical scaling behaviors. As $Q$ decreases, the so-called critical speeding-up for non-local quantities becomes more and m
Externí odkaz:
http://arxiv.org/abs/2308.00254
Autor:
Elçi, Eren Metin, Grimm, Jens, Ding, Lijie, Nasrawi, Abrahim, Garoni, Timothy M., Deng, Youjin
Publikováno v:
Phys. Rev. E 97, 042126 (2018)
We design an irreversible worm algorithm for the zero-field ferromagnetic Ising model by using the lifting technique. We study the dynamic critical behavior of an energy estimator on both the complete graph and toroidal grids, and compare our finding
Externí odkaz:
http://arxiv.org/abs/1711.05346
Publikováno v:
J. Stat. Phys. 170, 22 (2018)
We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at
Externí odkaz:
http://arxiv.org/abs/1705.07189
Publikováno v:
Phys. Rev. Lett. 118, 115701 (2017)
We give an intuitive geometric explanation for the apparent breakdown of standard finite-size scaling in systems with periodic boundaries above the upper critical dimension. The Ising model and self-avoiding walk are simulated on five-dimensional hyp
Externí odkaz:
http://arxiv.org/abs/1612.01722
Publikováno v:
Nucl. Phys. B 903, 19 (2016)
The random-cluster model, a correlated bond percolation model, unifies a range of important models of statistical mechanics in one description, including independent bond percolation, the Potts model and uniform spanning trees. By introducing a class
Externí odkaz:
http://arxiv.org/abs/1509.00668
Publikováno v:
Phys. Rev. Lett. 114, 115701 (2015)
We analyze the fragmentation behavior of random clusters on the lattice under a process where bonds between neighboring sites are successively broken. Modeling such structures by configurations of a generalized Potts or random-cluster model allows us
Externí odkaz:
http://arxiv.org/abs/1411.1291
Publikováno v:
Phys. Rev. B 89, 064421 (2014)
For the two-dimensional Q-state Potts model at criticality, we consider Fortuin-Kasteleyn and spin clusters and study the average number N_Gamma of clusters that intersect a given contour Gamma. To leading order, N_Gamma is proportional to the length
Externí odkaz:
http://arxiv.org/abs/1311.4186
Autor:
Elçi, Eren Metin, Weigel, Martin
Publikováno v:
J. Phys. Conf. Ser. 510, 012013 (2014)
We review Sweeny's algorithm for Monte Carlo simulations of the random cluster model. Straightforward implementations suffer from the problem of computational critical slowing down, where the computational effort per edge operation scales with a powe
Externí odkaz:
http://arxiv.org/abs/1310.8426
Autor:
Elçi, Eren Metin, Weigel, Martin
Publikováno v:
Phys. Rev. E 88, 033303 (2013)
The simulation of spin models close to critical points of continuous phase transitions is heavily impeded by the occurrence of critical slowing down. A number of cluster algorithms, usually based on the Fortuin-Kasteleyn representation of the Potts m
Externí odkaz:
http://arxiv.org/abs/1307.6647