Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Ekström, Sven‐Erik"'
Autor:
Barbarino, Giovanni, Ekström, Sven-Erik, Garoni, Carlo, Meadon, David, Serra-Capizzano, Stefano, Vassalos, Paris
We study the spectral properties of flipped Toeplitz matrices of the form $H_n(f)=Y_nT_n(f)$, where $T_n(f)$ is the $n\times n$ Toeplitz matrix generated by the function $f$ and $Y_n$ is the $n\times n$ exchange (or flip) matrix having $1$ on the mai
Externí odkaz:
http://arxiv.org/abs/2312.06170
Autor:
Barbarino, Giovanni, Ekström, Sven-Erik, Garoni, Carlo, Meadon, David, Serra-Capizzano, Stefano, Vassalos, Paris
Let $\{\Lambda_n=\{\lambda_{1,n},\ldots,\lambda_{d_n,n}\}\}_n$ be a sequence of finite multisets of real numbers such that $d_n\to\infty$ as $n\to\infty$, and let $f:\Omega\subset\mathbb R^d\to\mathbb R$ be a Lebesgue measurable function defined on a
Externí odkaz:
http://arxiv.org/abs/2309.03662
Autor:
Ekström, Sven-Erik, Meadon, David
Consider the Toeplitz matrix $T_n(f)$ generated by the symbol $f(\theta)=\hat{f}_r e^{\mathbf{i}r\theta}+\hat{f}_0+\hat{f}_{-s} e^{-\mathbf{i}s\theta}$, where $\hat{f}_r, \hat{f}_0, \hat{f}_{-s} \in \mathbb{C}$ and $0
Externí odkaz:
http://arxiv.org/abs/2305.15107
In a series of recent papers the spectral behavior of the matrix sequence $\{Y_nT_n(f)\}$ is studied in the sense of the spectral distribution, where $Y_n$ is the main antidiagonal (or flip matrix) and $T_n(f)$ is the Toeplitz matrix generated by the
Externí odkaz:
http://arxiv.org/abs/2203.06992
The first focus of this paper is the characterization of the spectrum and the singular values of the coefficient matrix stemming from the discretization with space-time grid for a parabolic diffusion problem and from the approximation of distributed
Externí odkaz:
http://arxiv.org/abs/2202.05555
Autor:
Coco, Armando, Ekström, Sven-Erik, Russo, Giovanni, Serra-Capizzano, Stefano, Stissi, Santina Chiara
When approximating elliptic problems by using specialized approximation techniques, we obtain large structured matrices whose analysis provides information on the stability of the method. Here we provide spectral and norm estimates for matrix sequenc
Externí odkaz:
http://arxiv.org/abs/2108.09086
A powerful tool for analyzing and approximating the singular values and eigenvalues of structured matrices is the theory of GLT sequences. By the GLT theory one can derive a function, which describes the singular value or the eigenvalue distribution
Externí odkaz:
http://arxiv.org/abs/2010.06199
In the context of matrix displacement decomposition, Bozzo and Di Fiore introduced the so-called $\tau_{\varepsilon,\varphi}$ algebra, a generalization of the more known $\tau$ algebra originally proposed by Bini and Capovani. We study the properties
Externí odkaz:
http://arxiv.org/abs/2008.10554
It is well known that the discretization of fractional diffusion equations (FDEs) with fractional derivatives $\alpha\in(1,2)$, using the so-called weighted and shifted Gr\"unwald formula, leads to linear systems whose coefficient matrices show a Toe
Externí odkaz:
http://arxiv.org/abs/1912.13304
Autor:
Ekström, Sven-Erik, Vassalos, Paris
It is known that the generating function $f$ of a sequence of Toeplitz matrices $\{T_n(f)\}_n$ may not describe the asymptotic distribution of the eigenvalues of $T_n(f)$ if $f$ is not real. In a recent paper, we assume as a working hypothesis that,
Externí odkaz:
http://arxiv.org/abs/1910.13810