Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Ekin Ozman"'
Publikováno v:
Canadian Journal of Mathematics. :1-21
In this paper, we prove results about solutions of the Diophantine equation $x^p+y^p=z^3$ over various number fields using the modular method. First, by assuming some standard modularity conjecture, we prove an asymptotic result for general number fi
Publikováno v:
Nagoya Mathematical Journal. 248:865-887
We study the p-rank stratification of the moduli space of cyclic degree $\ell $ covers of the projective line in characteristic p for distinct primes p and $\ell $ . The main result is about the intersection of the p-rank $0$ stratum with the boundar
Autor:
Kristin E. Lauter, Rachel Newton, Marco Streng, Pınar Kılıçer, Ekin Ozman, Elisa Lorenzo García
Publikováno v:
16 pages, some minor and major updates. 2016
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2020, 148 (7), pp.2843-2861. ⟨10.1090/proc/14975⟩
Proceedings of the American Mathematical Society, 2020, 148 (7), pp.2843-2861. ⟨10.1090/proc/14975⟩
Proceedings of the american mathematical society, 148(7), 2843-2861
Proceedings of the American Mathematical Society, 148(7), 2843-2861. American Mathematical Society (AMS)
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2020, 148 (7), pp.2843-2861. ⟨10.1090/proc/14975⟩
Proceedings of the American Mathematical Society, 2020, 148 (7), pp.2843-2861. ⟨10.1090/proc/14975⟩
Proceedings of the american mathematical society, 148(7), 2843-2861
Proceedings of the American Mathematical Society, 148(7), 2843-2861. American Mathematical Society (AMS)
We give bounds on the primes of geometric bad reduction for curves of genus three of primitive CM type in terms of the CM orders. In the case of genus one, there are no primes of geometric bad reduction because CM elliptic curves are CM abelian varie
Autor:
Yasemin Kara, Ekin Ozman
Publikováno v:
International Journal of Number Theory. 16:907-924
Recent work of Freitas and Siksek showed that an asymptotic version of Fermat’s Last Theorem (FLT) holds for many totally real fields. This result was extended by Deconinck to the generalized Fermat equation of the form [Formula: see text], where [
Publikováno v:
Association for Women in Mathematics Series ISBN: 9783030776992
Let L be a finite extension of F_q(t). We calculate the proportion of polynomials of degree d in F_q[t] that are everywhere locally norms from L/F_q(t) which fail to be global norms from L/F_q(t).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::73312b0c3c3523edc7a26dc5c54fbc30
https://doi.org/10.1007/978-3-030-77700-5
https://doi.org/10.1007/978-3-030-77700-5
Publikováno v:
Volume: 44, Issue: 4 1197-1211
Turkish Journal of Mathematics
Turkish Journal of Mathematics
Let $K$ be a totally real number field with narrow class number one and $O_K$ be its ring of integers. We prove that there is a constant $B_K$ depending only on $K$ such that for any prime exponent $p>B_K$ the Fermat type equation $x^p+y^p=z^2$ with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d37a5fd6a05c176f2178dc5b27062aa2
https://aperta.ulakbim.gov.tr/record/10545
https://aperta.ulakbim.gov.tr/record/10545
Autor:
Ekin Ozman
In this survey we summarize some results about the rational points of twisted modular curves. We also raise some open questions and conjectures.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb121a45a8ba5d47b546b78afc31f95b
https://aperta.ulakbim.gov.tr/record/74713
https://aperta.ulakbim.gov.tr/record/74713
Autor:
Samir Siksek, Ekin Ozman
In this paper we determine the quadratic points on the modular curves X_0(N), where the curve is non-hyperelliptic, the genus is 3, 4 or 5, and the Mordell--Weil group of J_0(N) is finite. The values of N are 34, 38, 42, 44, 45, 51, 52, 54, 55, 56, 6
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1576c6e425f07c5da664dcdec21856ed
http://wrap.warwick.ac.uk/109403/13/WRAP-quadratic-points-modular-curves-Ozman-2018.pdf
http://wrap.warwick.ac.uk/109403/13/WRAP-quadratic-points-modular-curves-Ozman-2018.pdf
Inspired by the September 2016 conference of the same name, this second volume highlights recent research in a wide range of topics in contemporary number theory and arithmetic geometry. Research reports from projects started at the conference, expos
Autor:
Brooke Feigon, Matilde Lalín, Nathan Kaplan, Melanie Matchett Wood, Alina Bucur, Ekin Ozman, Chantal David
Publikováno v:
International Mathematics Research Notices. 2016:4297-4340