Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Ekaterina S. Kovaleva"'
Autor:
Evgeniya A. Malykh, Liubov I. Golubeva, Ekaterina S. Kovaleva, Mikhail S. Shupletsov, Elena V. Rodina, Sergey V. Mashko, Nataliya V. Stoynova
Publikováno v:
Microorganisms, Vol 11, Iss 2, p 294 (2023)
Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PPi, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PPi hydrolysis is carried out
Externí odkaz:
https://doaj.org/article/af964f35fadd418690d79f9aa38118d4
Autor:
Irina V. Sandulenko, Ekaterina S. Kovaleva, Maria V. Zelentsova, Asmik A. Ambartsumyan, Sergey N. Gorlov, Anastasia A. Danshina, Rinat R. Aysin, Sergey K. Moiseev
Publikováno v:
Organic & Biomolecular Chemistry. 21:1440-1449
A method is reported to control the stereoselectivity at C(20) in the syntheses of 20-R-21,21,21-trifluorothevinols, the opioid ligands incorporating fluorine atoms within the pharmacophore associated with the surroundings of the C(20) carbon atom.
Autor:
Alexandr S. Peregudov, Irina V. Sandulenko, Sergey K. Moiseev, Valery N. Kalinin, Ekaterina S. Kovaleva
Publikováno v:
ChemInform. 47
Publikováno v:
Nonlinear Analysis: Real World Applications. 12:146-155
The system of nonlinear parabolic equations that models the dynamics of three populations is studied. The strong nonuniqueness in the form of continuous cosymmetric family of steady states is detected for some parameter values. Collapse of the family
Publikováno v:
Mathematical Models and Computer Simulations. 1:150-155
The dynamics of a cosymmetric system of nonlinear parabolic equations is studied to model the population kinetics of three interacting species. A finite-difference scheme that preserves the cosymmetry of the underlying problem is designed. A method f
Autor:
Alexandr S. Peregudov, Valery N. Kalinin, Irina V. Sandulenko, Sergey K. Moiseev, Ekaterina S. Kovaleva
Publikováno v:
ChemistrySelect. 1:1004-1005
Publikováno v:
Computer Algebra in Scientific Computing ISBN: 9783540751861
CASC
CASC
Dynamics of a cosymmetric system of nonlinear parabolic equations is studied to model of population kinetics. Computer algebra system Maple is applied to perform some stages of analytical investigation and develop a finite-difference scheme which res
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4182561e1245c77d5527f26780d14bfb
https://doi.org/10.1007/978-3-540-75187-8_21
https://doi.org/10.1007/978-3-540-75187-8_21
Publikováno v:
PAMM. 7:1030401-1030402
We study dynamics in the population kinetics model which is given by the system of nonlinear parabolic equations with cosymmetry property. The cosymmetry implies the emergence of continuous families of steady states with variable spectrum of stabilit