Zobrazeno 1 - 10
of 119
pro vyhledávání: '"Eisele, Florian"'
Autor:
Eisele, Florian
We show that there are finite monoids $M$ such that the Cartan matrix of the monoid algebra $\mathbb C M$ is non-singular, whilst the Cartan matrix of $kM$ is singular for some field $k$ of positive characteristic, disproving a recent conjecture of S
Externí odkaz:
http://arxiv.org/abs/2306.14002
Autor:
Eisele, Florian
We introduce a method that produces a bijection between the posets ${\rm silt-}{A}$ and ${\rm silt-}{B}$ formed by the isomorphism classes of basic silting complexes over finite-dimensional $k$-algebras $A$ and $B$, by lifting $A$ and $B$ to two $k[[
Externí odkaz:
http://arxiv.org/abs/2101.06258
Autor:
Duell, Johannes, Leipold, Alexander M., Appenzeller, Silke, Fuhr, Viktoria, Rauert-Wunderlich, Hilka, Da Via, Matteo, Dietrich, Oliver, Toussaint, Christophe, Imdahl, Fabian, Eisele, Florian, Afrin, Nazia, Grundheber, Lars, Einsele, Hermann, Weinhold, Niels, Rosenwald, Andreas, Topp, Max S., Saliba, Antoine-Emmanuel, Rasche, Leo
Publikováno v:
In Blood 22 February 2024 143(8):685-696
Autor:
Eisele, Florian, Livesey, Michael
We construct blocks of finite groups with arbitrarily large Morita Frobenius numbers, an invariant which determines the size of the minimal field of definition of the associated basic algebra. This answers a question of Benson and Kessar. This also i
Externí odkaz:
http://arxiv.org/abs/2006.13837
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Eisele, Florian
Let $(K,\mathcal O, k)$ be a $p$-modular system with $k$ algebraically closed and $\mathcal O$ unramified, and let $\Lambda$ be an $\mathcal O$-order in a separable $K$-algebra. We call a $\Lambda$-lattice $L$ rigid if ${\rm Ext}^1_{\Lambda}(L,L)=0$,
Externí odkaz:
http://arxiv.org/abs/1908.00129
Autor:
Eisele, Florian, Raedschelders, Theo
For an arbitrary finite-dimensional algebra $A$, we introduce a general approach to determining when its first Hochschild cohomology ${\rm HH}^1(A)$, considered as a Lie algebra, is solvable. If $A$ is moreover of tame or finite representation type,
Externí odkaz:
http://arxiv.org/abs/1903.07380
We give a reduction to quasisimple groups for Donovan's conjecture for blocks with abelian defect groups defined with respect to a suitable discrete valuation ring $\mathcal{O}$. Consequences are that Donovan's conjecture holds for $\mathcal{O}$-bloc
Externí odkaz:
http://arxiv.org/abs/1809.08152
Autor:
Eisele, Florian
Let $(K,\mathcal O,k)$ be a $p$-modular system and assume $k$ is algebraically closed. We show that if $\Lambda$ is an $\mathcal O$-order in a separable $K$-algebra, then $\textrm{Pic}_{\mathcal O}(\Lambda)$ carries the structure of an algebraic grou
Externí odkaz:
http://arxiv.org/abs/1807.05110