Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Einstein, Eduard"'
In this note, we clarify that the boundary criterion for relative cubulation of the first author and Groves works even when the peripheral subgroups are not one-ended. Specifically, if the boundary criterion is satisfied for a relatively hyperbolic g
Externí odkaz:
http://arxiv.org/abs/2409.14290
We introduce the notion of a "walk with jumps", which we conceive as an evolving process in which a point moves in a space (for us, typically $\mathbb{H}^2$) over time, in a consistent direction and at a consistent speed except that it is interrupted
Externí odkaz:
http://arxiv.org/abs/2406.16765
Autor:
Einstein, Eduard, Ng, Thomas
We expand the class of groups with relatively geometric actions on CAT(0) cube complexes by proving that it is closed under $C'(\frac16)$--small cancellation free products. We build upon a result of Martin and Steenbock who prove an analogous result
Externí odkaz:
http://arxiv.org/abs/2111.03008
Bowditch characterized relative hyperbolicity in terms of group actions on fine hyperbolic graphs with finitely many edge orbits and finite edge stabilizers. In this paper, we define generalized fine actions on hyperbolic graphs, in which the periphe
Externí odkaz:
http://arxiv.org/abs/2110.14682
Autor:
Einstein, Eduard, Groves, Daniel
We develop the foundations of the theory of relatively geometric actions of relatively hyperbolic groups on CAT(0) cube complexes, a notion introduced in our previous work [5]. In the relatively geometric setting we prove: full relatively quasi-conve
Externí odkaz:
http://arxiv.org/abs/2010.14441
Autor:
Einstein, Eduard
Wise's Quasiconvex Hierarchy Theorem classifying hyperbolic virtually compact special groups in terms of quasiconvex hierarchies played an essential role in Agol's proof of the Virtual Haken Conjecture. Answering a question of Wise, we construct a ne
Externí odkaz:
http://arxiv.org/abs/1903.12284
Autor:
Einstein, Eduard, Groves, Daniel
Publikováno v:
Compositio Math. 156 (2020) 862-867
We introduce a new kind of action of a relatively hyperbolic group on a CAT(0) cube complex, called a relatively geometric action. We provide an application to characterize finite-volume Kleinian groups in terms of action on cube complexes, analogous
Externí odkaz:
http://arxiv.org/abs/1902.08140
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Linear Algebra and Its Applications 2011 434(4):1119-1136
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.