Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Eino Rossi"'
Autor:
Eino Rossi
Publikováno v:
Annales Fennici Mathematici
The dimension of the visible part of self-affine sets, that satisfy domination and a projection condition, is being studied. The main result is that the assouad dimension of the visible part equals to 1 for all directions outside the set of limit dir
Publikováno v:
Transactions of the American Mathematical Society. 374:1297-1326
We calculate the Assouad dimension of a planar self-affine set $X$ satisfying the strong separation condition and the projection condition and show that $X$ is minimal for the conformal Assouad dimension. Furthermore, we see that such a self-affine s
Autor:
Eino Rossi, Pablo Shmerkin
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We show that a set of small box counting dimension can be covered by a H¨older graph from all but a small set of directions, and give sharp bounds for the dimension of the exceptional set, improving a result of B. Hunt and V. Kaloshin. We observe th
Autor:
Ville Suomala, Eino Rossi
We study the conformal dimension of fractal percolation and show that, almost surely, the conformal dimension of a fractal percolation is strictly smaller than its Hausdorff dimension.
Comment: 16 pages, 4 figures, minor corrections to previous
Comment: 16 pages, 4 figures, minor corrections to previous
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::99acf879ee08ad3c87e78092dd3a0053
http://urn.fi/urn:nbn:fi-fe202301102188
http://urn.fi/urn:nbn:fi-fe202301102188
Autor:
Eino Rossi, Pablo Shmerkin
The $L^q$ dimensions, for $1
Comment: 19 pages
Comment: 19 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91ed89aba7ef1c632c561044cabd158c
http://hdl.handle.net/10138/325288
http://hdl.handle.net/10138/325288
We study the porosity properties of fractal percolation sets $E\subset\mathbb{R}^d$. Among other things, for all $0
Comment: 29 pages, 8 figures
Comment: 29 pages, 8 figures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d7c4269b37c3c0864142e709e024ebe
http://arxiv.org/abs/1508.05244
http://arxiv.org/abs/1508.05244
Autor:
Eino Rossi, Antti Käenmäki
We consider dimensional properties of limit sets of Moran constructions satisfying the finite clustering property. Just to name a few, such limit sets include self-conformal sets satisfying the weak separation condition and certain sub-self-affine se
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a1ecafa9f5394e6aca33dbc449ae585
http://arxiv.org/abs/1506.07851
http://arxiv.org/abs/1506.07851
Publikováno v:
Kaenmaki, A, Koivusalo, H L L & Rossi, E 2017, ' Self-affine sets with fibred tangents ', Ergodic Theory Dynamical Systems, vol. 37, no. 6, pp. 1915–1934 . https://doi.org/10.1017/etds.2015.130
We study tangent sets of strictly self-affine sets in the plane. If a set in this class satisfies the strong separation condition and projects to a line segment for sufficiently many directions, then for each generic point there exists a rotation $\m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3d1216bedbdfad43c14df9cb19522b99
http://arxiv.org/abs/1505.00958
http://arxiv.org/abs/1505.00958
Autor:
Changhao Chen, Eino Rossi
Publikováno v:
Illinois J. Math. 58, no. 3 (2014), 779-806
We construct a compact metric space that has any other compact metric space as a tangent, with respect to the Gromov-Hausdorff distance, at all points. Furthermore, we give examples of compact sets in the Euclidean unit cube, that have almost any oth
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee936634cc075d1150b38b8f249f0a8a
Autor:
Eino Rossi
Publikováno v:
Journal of Mathematical Analysis and Applications. 413(2):1030
We show the existence of the local dimension of an invariant probability measure on an infinitely generated self-affine set, for almost all translations. This implies that an ergodic probability measure is exactly dimensional. Furthermore the local d