Zobrazeno 1 - 10
of 24 033
pro vyhledávání: '"Eigenvectors and eigenvalues"'
Autor:
Usevich, Konstantin, Barthelme, Simon
Computing the eigenvectors and eigenvalues of a perturbed matrix can be remarkably difficult when the unperturbed matrix has repeated eigenvalues. In this work we show how the limiting eigenvectors and eigenvalues of a symmetric matrix $K(\varepsilon
Externí odkaz:
http://arxiv.org/abs/2407.17047
Autor:
Frost, H. Robert
We present a novel technique for sparse principal component analysis. This method, named Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA), is based on the formula for computing squared eigenvector loadings of a Hermitian mat
Externí odkaz:
http://arxiv.org/abs/2006.01924
Autor:
Gesztesy, Fritz, Zinchenko, Maxim
We revisit an archive submission by P. B. Denton, S. J. Parke, T. Tao, and X. Zhang, arXiv:1908.03795, on $n \times n$ self-adjoint matrices from the point of view of self-adjoint Dirichlet Schr\"odinger operators on a compact interval.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/2003.10383
Autor:
Voss, Henning U., Ballon, Douglas J.
Publikováno v:
Phys. Rev. Research 2, 012054 (2020)
The eigenvector-eigenvalue identity relates the eigenvectors of a Hermitian matrix to its eigenvalues and the eigenvalues of its principal submatrices in which the jth row and column have been removed. We show that one-dimensional arrays of coupled r
Externí odkaz:
http://arxiv.org/abs/2001.02073
Autor:
Lakness, John
The method of computing eigenvectors from eigenvalues of submatrices can be shown as equivalent to a method of computing the constraint which achieves specified stationary values of a quadratic optimization. Similarly, we show computation of eigenvec
Externí odkaz:
http://arxiv.org/abs/1912.04060
Autor:
Tomei, Carlos
This is a remark on a recent post by P. Denton, S. Parke, T. Tao, X. Zhang, Eigenvectors from eigenvalues, arXiv:1908.03795v1
Comment: One page, no figures
Comment: One page, no figures
Externí odkaz:
http://arxiv.org/abs/1911.09080
Autor:
Chen, Xiaomei
Denton, Parke, Tao and Zhang gave a new method which determines eigenvectors from eigenvalues for Hermitian matrices with distinct eigenvalues. In this short note, we extend the above result to general Hermitian matrices.
Externí odkaz:
http://arxiv.org/abs/1911.09081
Autor:
Stawiska, Malgorzata
Using the notion of a higher adjugate of a matrix, we generalize the eigenvector-eigenvalue formula surveyed recently by Denton, Parke, Tao and Zhang to arbitrary square matrices over $\mathbb{C}$ and their possibly multiple eigenvalues.
Externí odkaz:
http://arxiv.org/abs/1912.06967
We present a comprehensive, analytical treatment of the finite Kitaev chain for arbitrary chemical potential. We derive the momentum quantization conditions and present exact analytical formulae for the resulting energy spectrum and eigenstate wave f
Externí odkaz:
http://arxiv.org/abs/1909.10971
If $A$ is an $n \times n$ Hermitian matrix with eigenvalues $\lambda_1(A),\dots,\lambda_n(A)$ and $i,j = 1,\dots,n$, then the $j^{\mathrm{th}}$ component $v_{i,j}$ of a unit eigenvector $v_i$ associated to the eigenvalue $\lambda_i(A)$ is related to
Externí odkaz:
http://arxiv.org/abs/1908.03795