Zobrazeno 1 - 10
of 14 271
pro vyhledávání: '"Ehrlich, P. P."'
Autor:
Schneider, Andreas C., Neuhaus, Valentin, Ehrlich, David A., Makkeh, Abdullah, Ecker, Alexander S., Priesemann, Viola, Wibral, Michael
In modern deep neural networks, the learning dynamics of the individual neurons is often obscure, as the networks are trained via global optimization. Conversely, biological systems build on self-organized, local learning, achieving robustness and ef
Externí odkaz:
http://arxiv.org/abs/2412.02482
Autor:
Hassan, Mohamed Abul, Sun, Pu, Zhou, Xiangnan, Kraft, Lisanne, Hadfield, Kelsey T, Ehrlich, Katjana, Qi, Jinyi, Birkeland, Andrew, Marcu, Laura
This study introduces a novel data-centric approach to improve real-time surgical guidance using fiber-based fluorescence lifetime imaging (FLIm). A key aspect of the methodology is the accurate detection of the aiming beam, which is essential for lo
Externí odkaz:
http://arxiv.org/abs/2411.07395
Autor:
Acero, M. A., Acharya, B., Adamson, P., Aliaga, L., Anfimov, N., Antoshkin, A., Arrieta-Diaz, E., Asquith, L., Aurisano, A., Back, A., Balashov, N., Baldi, P., Bambah, B. A., Bannister, E., Barros, A., Bashar, S., Bat, A., Bays, K., Bernstein, R., Bezerra, T. J. C., Bhatnagar, V., Bhattarai, D., Bhuyan, B., Bian, J., Booth, A. C., Bowles, R., Brahma, B., Bromberg, C., Buchanan, N., Butkevich, A., Calvez, S., Carroll, T. J., Catano-Mur, E., Cesar, J. P., Chatla, A., Chirco, R., Choudhary, B. C., Christensen, A., Cicala, M. F., Coan, T. E., Cooleybeck, A., Cortes-Parra, C., Coveyou, D., Cremonesi, L., Davies, G. S., Derwent, P. F., Ding, P., Djurcic, Z., Dobbs, K., Dolce, M., Doyle, D., Tonguino, D. Dueñas, Dukes, E. C., Dye, A., Ehrlich, R., Ewart, E., Filip, P., Frank, M. J., Gallagher, H. R., Gao, F., Giri, A., Gomes, R. A., Goodman, M. C., Groh, M., Group, R., Habig, A., Hakl, F., Hartnell, J., Hatcher, R., He, M., Heller, K., Hewes, V, Himmel, A., Horoho, T., Ivaneev, Y., Ivanova, A., Jargowsky, B., Jarosz, J., Johnson, C., Judah, M., Kakorin, I., Kaplan, D. M., Kalitkina, A., Kirezli-Ozdemir, B., Kleykamp, J., Klimov, O., Koerner, L. W., Kolupaeva, L., Kralik, R., Kumar, A., Kus, V., Lackey, T., Lang, K., Lesmeister, J., Lister, A., Liu, J., Lock, J. A., Lokajicek, M., MacMahon, M., Magill, S., Mann, W. A., Manoharan, M. T., Plata, M. Manrique, Marshak, M. L., Martinez-Casales, M., Matveev, V., Mehta, B., Messier, M. D., Meyer, H., Miao, T., Miller, W. H., Mishra, S., Mishra, S. R., Mislivec, A., Mohanta, R., Moren, A., Morozova, A., Mu, W., Mualem, L., Muether, M., Mulder, K., Myers, D., Naples, D., Nath, A., Nelleri, S., Nelson, J. K., Nichol, R., Niner, E., Norman, A., Norrick, A., Nosek, T., Oh, H., Olshevskiy, A., Olson, T., Ozkaynak, M., Pal, A., Paley, J., Panda, L., Patterson, R. B., Pawloski, G., Petti, R., Porter, J. C. C., Prais, L. R., Rabelhofer, M., Rafique, A., Raj, V., Rajaoalisoa, M., Ramson, B., Rebel, B., Roy, P., Samoylov, O., Sanchez, M. C., Falero, S. Sanchez, Shanahan, P., Sharma, P., Sheshukov, A., Shivam, Shmakov, A., Shorrock, W., Shukla, S., Singha, D. K., Singh, I., Singh, P., Singh, V., Smith, E., Smolik, J., Snopok, P., Solomey, N., Sousa, A., Soustruznik, K., Strait, M., Suter, L., Sutton, A., Sutton, K., Swain, S., Sweeney, C., Sztuc, A., Talukdar, N., Oregui, B. Tapia, Tas, P., Thakore, T., Thomas, J., Tiras, E., Titus, M., Torun, Y., Tran, D., Trokan-Tenorio, J., Urheim, J., Vahle, P., Vallari, Z., Villamil, J. D., Vockerodt, K. J., Wallbank, M., Weber, C., Wetstein, M., Whittington, D., Wickremasinghe, D. A., Wieber, T., Wolcott, J., Wrobel, M., Wu, S., Wu, W., Xiao, Y., Yaeggy, B., Yahaya, A., Yankelevich, A., Yonehara, K., Yu, Y., Zadorozhnyy, S., Zalesak, J., Zwaska, R.
The NOvA collaboration reports cross-section measurements for $\nu_{\mu}$ charged-current interactions with low hadronic energy (maximum kinetic energy of 250 MeV for protons and 175 MeV for pions) in the NOvA Near Detector. The results are presented
Externí odkaz:
http://arxiv.org/abs/2410.10222
Autor:
Acero, M. A., Acharya, B., Adamson, P., Aliaga, L., Anfimov, N., Antoshkin, A., Arrieta-Diaz, E., Asquith, L., Aurisano, A., Back, A., Balashov, N., Baldi, P., Bambah, B. A., Bannister, E., Barros, A., Bashar, S., Bat, A., Bays, K., Bernstein, R., Bezerra, T. J. C., Bhatnagar, V., Bhattarai, D., Bhuyan, B., Bian, J., Booth, A. C., Bowles, R., Brahma, B., Bromberg, C., Buchanan, N., Butkevich, A., Calvez, S., Carroll, T. J., Catano-Mur, E., Cesar, J. P., Chatla, A., Chirco, R., Choudhary, B. C., Christensen, A., Cicala, M. F., Coan, T. E., Cooleybeck, A., Cortes-Parra, C., Coveyou, D., Cremonesi, L., Davies, G. S., Derwent, P. F., Ding, P., Djurcic, Z., Dobbs, K., Dolce, M., Doyle, D., Tonguino, D. Duenas, Dukes, E. C., Dye, A., Ehrlich, R., Ewart, E., Filip, P., Frank, M. J., Gallagher, H. R., Gao, F., Giri, A., Gomes, R. A., Goodman, M. C., Groh, M., Group, R., Habig, A., Hakl, F., Hartnell, J., Hatcher, R., He, M., Heller, K., Hewes, V, Himmel, A., Horoho, T., Ivaneev, Y., Ivanova, A., Jargowsky, B., Jarosz, J., Johnson, C., Judah, M., Kakorin, I., Kaplan, D. M., Kalitkina, A., Kirezli-Ozdemir, B., Kleykamp, J., Klimov, O., Koerner, L. W., Kolupaeva, L., Kralik, R., Kumar, A., Kuruppu, C. D., Kus, V., Lackey, T., Lang, K., Lesmeister, J., Lister, A., Liu, J., Lock, J. A., Lokajicek, M., MacMahon, M., Magill, S., Mann, W. A., Manoharan, M. T., Plata, M. Manrique, Marshak, M. L., Martinez-Casales, M., Matveev, V., Mehta, B., Messier, M. D., Meyer, H., Miao, T., Miller, W. H., Mishra, S., Mishra, S. R., Mohanta, R., Moren, A., Morozova, A., Mu, W., Mualem, L., Muether, M., Mulder, K., Myers, D., Naples, D., Nath, A., Nelleri, S., Nelson, J. K., Nichol, R., Niner, E., Norman, A., Norrick, A., Nosek, T., Oh, H., Olshevskiy, A., Olson, T., Ozkaynak, M., Pal, A., Paley, J., Panda, L., Patterson, R. B., Pawloski, G., Petti, R., Plunkett, R. K., Prais, L. R., Rabelhofer, M., Rafique, A., Raj, V., Rajaoalisoa, M., Ramson, B., Rebel, B., Roy, P., Samoylov, O., Sanchez, M. C., Falero, S. Sanchez, Shanahan, P., Sharma, P., Sheshukov, A., Shivam, Shmakov, A., Shorrock, W., Shukla, S., Singha, D. K., Singh, I., Singh, P., Singh, V., Smith, E., Smolik, J., Snopok, P., Solomey, N., Sousa, A., Soustruznik, K., Strait, M., Suter, L., Sutton, A., Sutton, K., Swain, S., Sweeney, C., Sztuc, A., Oregui, B. Tapia, Tas, P., Thakore, T., Thomas, J., Tiras, E., Torun, Y., Tran, D., Trokan-Tenorio, J., Urheim, J., Vahle, P., Vallari, Z., Villamil, J. D., Vockerodt, K. J., Wallbank, M., Wetstein, M., Whittington, D., Wickremasinghe, D. A., Wieber, T., Wolcott, J., Wrobel, M., Wu, S., Wu, W., Xiao, Y., Yaeggy, B., Yahaya, A., Yankelevich, A., Yonehara, K., Yu, Y., Zadorozhnyy, S., Zalesak, J., Zwaska, R.
Double- and single-differential cross sections for inclusive charged-current neutrino-nucleus scattering are reported for the kinematic domain 0 to 2 GeV/c in three-momentum transfer and 0 to 2 GeV in available energy, at a mean muon-neutrino energy
Externí odkaz:
http://arxiv.org/abs/2410.05526
Implicit Neural Networks (INRs) have emerged as powerful representations to encode all forms of data, including images, videos, audios, and scenes. With video, many INRs for video have been proposed for the compression task, and recent methods featur
Externí odkaz:
http://arxiv.org/abs/2408.02672
Autor:
Brown, Bradley, Juravsky, Jordan, Ehrlich, Ryan, Clark, Ronald, Le, Quoc V., Ré, Christopher, Mirhoseini, Azalia
Scaling the amount of compute used to train language models has dramatically improved their capabilities. However, when it comes to inference, we often limit the amount of compute to only one attempt per problem. Here, we explore inference compute as
Externí odkaz:
http://arxiv.org/abs/2407.21787
Autor:
Li, Boyi, Zhu, Ligeng, Tian, Ran, Tan, Shuhan, Chen, Yuxiao, Lu, Yao, Cui, Yin, Veer, Sushant, Ehrlich, Max, Philion, Jonah, Weng, Xinshuo, Xue, Fuzhao, Tao, Andrew, Liu, Ming-Yu, Fidler, Sanja, Ivanovic, Boris, Darrell, Trevor, Malik, Jitendra, Han, Song, Pavone, Marco
We propose Wolf, a WOrLd summarization Framework for accurate video captioning. Wolf is an automated captioning framework that adopts a mixture-of-experts approach, leveraging complementary strengths of Vision Language Models (VLMs). By utilizing bot
Externí odkaz:
http://arxiv.org/abs/2407.18908
Autor:
NOvA Collaboration, Acero, M. A., Acharya, B., Adamson, P., Aliaga, L., Anfimov, N., Antoshkin, A., Arrieta-Diaz, E., Asquith, L., Aurisano, A., Back, A., Balashov, N., Baldi, P., Bambah, B. A., Bat, A., Bays, K., Bernstein, R., Bezerra, T. J. C., Bhatnagar, V., Bhattarai, D., Bhuyan, B., Bian, J., Booth, A. C., Bowles, R., Brahma, B., Bromberg, C., Buchanan, N., Butkevich, A., Calvez, S., Carroll, T. J., Catano-Mur, E., Cesar, J. P., Chatla, A., Chaudhary, S., Chirco, R., Choudhary, B. C., Christensen, A., Cicala, M. F., Coan, T. E., Cooleybeck, A., Cortes-Parra, C., Coveyou, D., Cremonesi, L., Davies, G. S., Derwent, P. F., Djurcic, Z., Dolce, M., Doyle, D., Tonguino, D. Dueñas, Dukes, E. C., Dye, A., Ehrlich, R., Ewart, E., Filip, P., Franc, J., Frank, M. J., Gallagher, H. R., Gao, F., Giri, A., Gomes, R. A., Goodman, M. C., Groh, M., Group, R., Habig, A., Hakl, F., Hartnell, J., Hatcher, R., He, M., Heller, K., Hewes, V, Himmel, A., Ivaneev, Y., Ivanova, A., Jargowsky, B., Jarosz, J., Johnson, C., Judah, M., Kakorin, I., Kaplan, D. M., Kalitkina, A., Kleykamp, J., Klimov, O., Koerner, L. W., Kolupaeva, L., Kralik, R., Kumar, A., Kuruppu, C. D., Kus, V., Lackey, T., Lang, K., Lesmeister, J., Lister, A., Liu, J., Lock, J. A., Lokajicek, M., MacMahon, M., Magill, S., Mann, W. A., Manoharan, M. T., Plata, M. Manrique, Marshak, M. L., Martinez-Casales, M., Matveev, V., Mehta, B., Messier, M. D., Meyer, H., Miao, T., Mikola, V., Miller, W. H., Mishra, S., Mishra, S. R., Mislivec, A., Mohanta, R., Moren, A., Morozova, A., Mu, W., Mualem, L., Muether, M., Mulder, K., Myers, D., Naples, D., Nath, A., Nelleri, S., Nelson, J. K., Nichol, R., Niner, E., Norman, A., Norrick, A., Nosek, T., Oh, H., Olshevskiy, A., Olson, T., Ozkaynak, M., Pal, A., Paley, J., Panda, L., Patterson, R. B., Pawloski, G., Petrova, O., Petti, R., Prais, L. R., Rafique, A., Raj, V., Rajaoalisoa, M., Ramson, B., Ravelhofer, M., Rebel, B., Roy, P., Samoylov, O., Sanchez, M. C., Falero, S. Sánchez, Shanahan, P., Sharma, P., Shmakov, A., Sheshukov, A., Shukla, S., Singha, D. K., Shorrock, W., Singh, I., Singh, P., Singh, V., Smith, E., Smolik, J., Snopok, P., Solomey, N., Sousa, A., Soustruznik, K., Strait, M., Suter, L., Sutton, A., Sutton, K., Swain, S., Sweeney, C., Sztuc, A., Oregui, B. Tapia, Tas, P., Thakore, T., Thomas, J., Tiras, E., Torun, Y., Tripathi, J., Trokan-Tenorio, J., Urheim, J., Vahle, P., Vallari, Z., Vasel, J., Villamil, J. D., Vockerodt, K. J., Vrba, T., Wallbank, M., Wetstein, M., Whittington, D., Wickremasinghe, D. A., Wieber, T., Wolcott, J., Wrobel, M., Wu, S., Wu, W., Xiao, Y., Yaeggy, B., Yahaya, A., Yankelevich, A., Yonehara, K., Yu, Y., Zadorozhnyy, S., Zalesak, J., Zwaska, R.
Publikováno v:
Phys. Rev. Lett. 133, 201802 (2024)
This Letter reports a search for charge-parity ($CP$) symmetry violating nonstandard interactions (NSI) of neutrinos with matter using the NOvA Experiment, and examines their effects on the determination of the standard oscillation parameters. Data f
Externí odkaz:
http://arxiv.org/abs/2403.07266
Autor:
Juravsky, Jordan, Brown, Bradley, Ehrlich, Ryan, Fu, Daniel Y., Ré, Christopher, Mirhoseini, Azalia
Transformer-based large language models (LLMs) are now deployed to hundreds of millions of users. LLM inference is commonly performed on batches of sequences that share a prefix, such as few-shot examples or a chatbot system prompt. Decoding in this
Externí odkaz:
http://arxiv.org/abs/2402.05099
Autor:
Padmanabhan, Namitha, Gwilliam, Matthew, Kumar, Pulkit, Maiya, Shishira R, Ehrlich, Max, Shrivastava, Abhinav
The many variations of Implicit Neural Representations (INRs), where a neural network is trained as a continuous representation of a signal, have tremendous practical utility for downstream tasks including novel view synthesis, video compression, and
Externí odkaz:
http://arxiv.org/abs/2401.10217