Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Ehrenmüller, Julia"'
The bandwidth theorem [Mathematische Annalen, 343(1):175--205, 2009] states that any $n$-vertex graph $G$ with minimum degree $(\frac{k-1}{k}+o(1))n$ contains all $n$-vertex $k$-colourable graphs $H$ with bounded maximum degree and bandwidth $o(n)$.
Externí odkaz:
http://arxiv.org/abs/1911.03958
A Hamilton Berge cycle of a hypergraph on $n$ vertices is an alternating sequence $(v_1, e_1, v_2, \ldots, v_n, e_n)$ of distinct vertices $v_1, \ldots, v_n$ and distinct hyperedges $e_1, \ldots, e_n$ such that $\{v_1,v_n\}\subseteq e_n$ and $\{v_i,
Externí odkaz:
http://arxiv.org/abs/1903.09057
Publikováno v:
Advances in Combinatorics, 2020:6, 60pp
The bandwidth theorem [Mathematische Annalen, 343(1):175--205, 2009] states that any $n$-vertex graph $G$ with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all $n$-vertex $k$-colourable graphs $H$ with bounded maximum degree and bandwidth
Externí odkaz:
http://arxiv.org/abs/1612.00661
Motivated by a question of Grinblat, we study the minimal number $\mathfrak{v}(n)$ that satisfies the following. If $A_1,\ldots, A_n$ are equivalence relations on a set $X$ such that for every $i\in[n]$ there are at least $\mathfrak{v}(n)$ elements w
Externí odkaz:
http://arxiv.org/abs/1508.06437
Autor:
Ehrenmüller, Julia, Rué, Juanjo
By means of analytic techniques we show that the expected number of spanning trees in a connected labelled series-parallel graph on $n$ vertices chosen uniformly at random satisfies an estimate of the form $s \varrho^{-n} (1+o(1))$, where $s$ and $\v
Externí odkaz:
http://arxiv.org/abs/1503.01922
Autor:
Clemens, Dennis, Ehrenmüller, Julia
A conjecture by Aharoni and Berger states that every family of $n$ matchings of size $n+1$ in a bipartite multigraph contains a rainbow matching of size $n$. In this paper we prove that matching sizes of $(3/2 + o(1)) n$ suffice to guarantee such a r
Externí odkaz:
http://arxiv.org/abs/1503.00438
Publikováno v:
The Electronic Journal of Combinatorics, 22(1) (2015), P1.60
We consider biased $(1:b)$ Avoider-Enforcer games in the monotone and strict versions. In particular, we show that Avoider can keep his graph being a forest for every but maybe the last round of the game if $b \geq 200 n \ln n$. By this we obtain ess
Externí odkaz:
http://arxiv.org/abs/1403.1482
Publikováno v:
Discrete Mathematics 340/3 (2017) 287-304
In 1966 Gallai asked whether all longest paths in a connected graph have nonempty intersection. This is not true in general and various counterexamples have been found. However, the answer to Gallai's question is positive for several well-known class
Externí odkaz:
http://arxiv.org/abs/1310.1376
Autor:
Chen, Guantao, Ehrenmüller, Julia, Fernandes, Cristina G., Heise, Carl Georg, Shan, Songling, Yang, Ping, Yates, Amy N.
Publikováno v:
In Discrete Mathematics March 2017 340(3):287-304
Autor:
Ehrenmüller, Julia, Rué, Juanjo
Publikováno v:
In Advances in Applied Mathematics April 2016 75:18-55