Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Ege Fujikawa"'
Autor:
EGE FUJIKAWA1 fujikawa@math.s.chiba-u.ac.jp, MASAHIKO TANIGUCHI2 tanig@cc.nara-wu.ac.jp
Publikováno v:
Conformal Geometry & Dynamics. 1/10/2018, Vol. 21, p64-77. 14p.
Autor:
EGE FUJIKAWA1 fujikawa@math.s.chiba-u.ac.jp, MASAHIKO TANIGUCHI2 tanig@cc.nara-wu.ac.jp
Publikováno v:
Conformal Geometry & Dynamics. 2/1/2017, Vol. 21 Issue 1, p64-77. 14p.
Autor:
Masahiko Taniguchi, Ege Fujikawa
Publikováno v:
Conformal Geometry and Dynamics of the American Mathematical Society. 21:64-77
We introduce the quasiconformal deformation space of an ordered countable set of an infinite number of points on a Riemann surface and give certain conditions under which it admits a complex structure via Teichmüller spaces of associated subsurfaces
Autor:
Ege Fujikawa
Publikováno v:
Computational Methods and Function Theory. 14:357-370
We consider the infinite dimensional Teichmuller space of a Riemann surface of general type. On the basis of the fact that the action of the quasiconformal mapping class group on the Teichmuller space is not discontinuous, in general, we divide the T
Autor:
Ege Fujikawa
Publikováno v:
In the Tradition of Ahlfors-Bers, VI. :39-50
Autor:
Katsuhiko Matsuzaki, Ege Fujikawa
Publikováno v:
Transactions of the American Mathematical Society. 365:3309-3327
Under a certain geometric assumption on a hyperbolic Riemann surface, we prove an asymptotic version of the fixed point theorem for the Teichmüller modular group, which asserts that every finite subgroup of the asymptotic Teichmüller modular group
Autor:
Ege Fujikawa
Publikováno v:
Contemporary Mathematics. :77-88
Autor:
Katsuhiko Matsuzaki, Ege Fujikawa
Publikováno v:
American Journal of Mathematics. 133:637-675
The stable quasiconformal mapping class group is a group of quasiconformal mapping classes of a Riemann surface that are homotopic to the identity outside some topologically finite subsurface. Its analytic counterpart is a group of mapping classes th
Autor:
Ege Fujikawa
Publikováno v:
Conformal Geometry and Dynamics of the American Mathematical Society. 12:227-239
For a Riemann surface of analytically infinite type, the action of the quasiconformal mapping class group on the Teichmüller space is not discontinuous in general. In this paper, we consider pure mapping classes that fix all topological ends of a Ri
Publikováno v:
Mathematische Zeitschrift. 260:865-888
A non-injective holomorphic self-cover of a Riemann surface induces a non-surjective holomorphic self-embedding of its Teichmuller space. We investigate the dynamics of such self-embeddings by applying our structure theorem of self-covering of Rieman