Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Eftekharinasab, Kaveh"'
Autor:
Eftekharinasab, Kaveh
We prove two versions of a global implicit function theorem, which involve no loss of derivative, for Keller's $ C_c^1 $-mappings between arbitrary Fr\'{e}chet spaces. Subsequently, within this framework, we apply these theorems to establish the glob
Externí odkaz:
http://arxiv.org/abs/2404.00286
Autor:
Eftekharinasab, Kaveh
We construct connection maps and linear symmetric connections on tangent and second-order tangent bundles for \fr manifolds using the notion of a spray. For these manifolds, we characterize linear symmetric connections on tangent bundles in terms of
Externí odkaz:
http://arxiv.org/abs/2307.15955
Autor:
Eftekharinasab, Kaveh
We prove multiplicity theorems for Keller $ C_c^1 $-functionals on Frechet spaces and Finsler manifolds which are invariant under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by applying t
Externí odkaz:
http://arxiv.org/abs/2210.09270
Autor:
Eftekharinasab, Kaveh
Publikováno v:
Poincare Journal of Analysis and Applications, Vol. 9, No. 1 (2022), 21-30
We prove a so-called linking theorem and some of its corollaries, namely a mountain pass theorem and a three critical points theorem for Keller $ C^1$-functional on $ C^1 $- Frechet manifolds. Our approach relies on a deformation result which is not
Externí odkaz:
http://arxiv.org/abs/2205.01359
Autor:
Eftekharinasab, Kaveh
Publikováno v:
Proceedings of the International Geometry Center, Vol. 14, No. 121 (2021) 137-153
We present some transversality results for a category of Fr\'{e}chet manifolds, the so-called $MC^k$-Fr\'{e}chet manifolds. In this context, we apply the obtained transversality results to construct the degree of nonlinear Fredholm mappings by virtue
Externí odkaz:
http://arxiv.org/abs/2101.09208
Autor:
EFTEKHARINASAB, KAVEH1 kaveh@imath.kiev.ua, HORIDKO, RUSLANA2 ruslana.horidko@npp.nau.edu.ua
Publikováno v:
Acta et Commentationes Universitatis Tartuensis de Mathematica. Jun2024, Vol. 28 Issue 1, p29-39. 11p.
Publikováno v:
Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics, Vol 13(62), No.1 (2020),29-152
We establish a framework, namely, nuclear bounded Fr\'{e}chet manifolds endowed with Riemann-Finsler structures to study geodesic curves on certain infinite dimensional manifolds such as the manifold of Riemannian metrics on a closed manifold. We pro
Externí odkaz:
http://arxiv.org/abs/2007.13832
Autor:
Eftekharinasab, Kaveh
Publikováno v:
Nonlinear Oscillations, Vol. 22, no.1 (2019) 1-13
We give sufficient conditions for a $ C^1_c $-local diffeomorphism between Fr\'{e}chet spaces to be a global one. We extend the Clarke's theory of generalized gradients to the more general setting of Fr\'{e}chet spaces. As a consequence, we define th
Externí odkaz:
http://arxiv.org/abs/1903.05162
Autor:
Eftekharinasab, Kaveh
Publikováno v:
Proceedings of the International Geometry Center, Vol 12, No. 2 (2019) 1-10
We provide sufficient conditions for the existence of Darboux charts on weakly symplectic bounded Fr\'{e}chet manifolds by using the Moser's trick.
Externí odkaz:
http://arxiv.org/abs/1812.09965
Autor:
Eftekharinasab, Kaveh
Publikováno v:
Methods of Functional Analysis and Topology, Vol. 26, no. 1 (2020), 68-75
We provide sufficient conditions for the existence of a global diffeomorphism between tame Frechet spaces. We prove a version of mountain pass theorem which plays a key ingredient in the proof of the main theorem.
Externí odkaz:
http://arxiv.org/abs/1804.08349