Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Efstratios Vernadakis"'
Autor:
Efstratios Vernadakis, Manuel Ritoré
In this paper we consider the problem of minimizing the relative perimeter under a volume constraint in the interior of a conically bounded convex set, i.e., an unbounded convex body admitting an \emph{exterior} asymptotic cone. Results concerning ex
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b4d23032d9078d5cbc0e0f2059c9e85
Autor:
Efstratios Vernadakis, Manuel Ritoré
In this paper we consider the isoperimetric profile of convex cylinders $K\times\mathbb{R}^q$, where $K$ is an $m$-dimensional convex body, and of cylindrically bounded convex sets, i.e, those with a relatively compact orthogonal projection over some
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abcb275ed3b24e6e07a896beb4934b38
Autor:
Manuel Ritoré, Efstratios Vernadakis
Given a compact Riemannian manifold $M$ without boundary, we show that large isoperimetric regions in $M\times\mathbb{R}^k$ are tubular neighborhoods of $M\times\{x\}$, with $x\in\mathbb{R}^k$.
Final version, to appear in Adv. Math
Final version, to appear in Adv. Math
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::28d4257e23c54500db151509b6fc08c4
http://arxiv.org/abs/1312.1581
http://arxiv.org/abs/1312.1581
Autor:
Efstratios Vernadakis, Manuel Ritoré
In this paper we consider the problem of minimizing the relative perimeter under a volume constraint in the interior of a convex body, i.e., a compact convex set in Euclidean space with interior points. We shall not impose any regularity assumption o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eab9ebafec094f173a0f9535806300c0
http://arxiv.org/abs/1302.4588
http://arxiv.org/abs/1302.4588