Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Efstratios Tsatis"'
Autor:
Efstratios Tsatis, Peter J. Olver
Publikováno v:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 474:20180160
We investigate the points of constancy in the piecewise constant solution profiles of the periodic linearized Korteweg--deVries equation with step function initial data at rational times. The solution formulas are given by certain Weyl sums, and we e
Publikováno v:
Journal of High Energy Physics
We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0fd8ccaf9ef7f2bbbf4bd7efc6908aa1
http://arxiv.org/abs/1403.6475
http://arxiv.org/abs/1403.6475
We use holography to study (3+1)-dimensional N=4 supersymmetric SU(Nc) Yang-Mills theory (SYM) in the large-Nc and large coupling limits, with a (2+1)-dimensional interface where the Yang-Mills coupling or theta-angle changes value, or "jumps." We co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::420952a9d612363a9385482ff79b8a5c
http://arxiv.org/abs/1210.0534
http://arxiv.org/abs/1210.0534
Wrapping a D(8-p)-brane on AdS_2 times a submanifold of S^{8-p} introduces point-like defects in the context of AdS/CFT correspondence for a Dp-brane background. We classify and work out the details in all possible cases with a single embedding angul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::024a8de60c9ffa321ca9a83980843cad
We show some computations related to the motion by mean curvature flow of a submanifold inside an ambient Riemannian manifold evolving by Ricci or backward Ricci flow. Special emphasis is given to the possible generalization of Huisken's monotonicity
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e079d4b18aecbd4c0f9cbb7605e9b555
http://arxiv.org/abs/0911.5130
http://arxiv.org/abs/0911.5130
Autor:
Efstratios Tsatis
We study monotonic quantities in the context of combined geometric flows. In particular, focusing on Ricci solitons as the ambient space, we consider solutions of the heat type equation integrated over embedded submanifolds evolving by mean curvature
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40d01db7a878abce4407f98466841f77
http://arxiv.org/abs/0812.1356
http://arxiv.org/abs/0812.1356