Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Efraimidis, Iason"'
Autor:
Efraimidis, Iason
Publikováno v:
Comptes Rendus. Mathématique, Vol 359, Iss 7, Pp 905-909 (2021)
We prove that a harmonic quasiconformal mapping defined on a finitely connected domain in the plane, all of whose boundary components are either points or quasicircles, admits a quasiconformal extension to the whole plane if its Schwarzian derivative
Externí odkaz:
https://doaj.org/article/c632df84bd0f4d328f3ca9d943800928
Autor:
Efraimidis, Iason, Gumenyuk, Pavel
We prove that the sublevel set $\big\{z\in\mathbb D\colon k_{\mathbb D}\big(z,z_0\big)-k_{\mathbb D}\big(f(z),w_0\big)<\mu\big\}$, ${\mu\in\mathbb R}$, is geodesically convex with respect to the Poincar\'e distance $k_{\mathbb D}$ in the unit disk $\
Externí odkaz:
http://arxiv.org/abs/2411.10222
We show that the Korenblum maximum (domination) principle is valid for weighted Bergman spaces $A^p_w$ with arbitrary (non-negative and integrable) radial weights $w$ in the case $1\le p<\infty$. We also notice that in every weighted Bergman space th
Externí odkaz:
http://arxiv.org/abs/2307.14699
Publikováno v:
Proc. Amer. Math. Soc. 151 (2023), no. 9, 3845-3854
Recently, Kayumov \cite{K} obtained a sharp estimate for the $n$-th truncated area functional for normalized functions in the Bloch space for $n\le 5$ and then, together with Wirths \cite{KW1}, extended the result for $n=6$. We prove that for the fun
Externí odkaz:
http://arxiv.org/abs/2208.10626
We provide two new formulas for quasiconformal extension to $\overline{\mathbb{C}}$ for harmonic mappings defined in the unit disk and having sufficiently small Schwarzian derivative. Both are generalizations of the Ahlfors-Weill extension for holomo
Externí odkaz:
http://arxiv.org/abs/2105.07492
Autor:
Efraimidis, Iason
If $\Omega$ is a simply connected domain in $\overline{{\mathbb C}}$ then, according to the Ahlfors-Gehring theorem, $\Omega$ is a quasidisk if and only if there exists a sufficient condition for the univalence of holomorphic functions in $\Omega$ in
Externí odkaz:
http://arxiv.org/abs/2009.14766
A pre-Schwarzian and a Schwarzian derivative for locally univalent pluriharmonic mappings in ${\mathbb C}^n$ are introduced. Basic properties such as the chain rule, multiplicative invariance and affine invariance are proved for these operators. It i
Externí odkaz:
http://arxiv.org/abs/1912.12619
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 July 2023 523(2)
Autor:
Chuaqui, Martin, Efraimidis, Iason
We introduce a class of Weierstrass-Enneper lifts of harmonic mappings which satisfy a criterion for univalence introduced by Duren, Osgood and the first author in [J. Geom. Anal. (2007)].
Comment: 13 pages, LaTeX
Comment: 13 pages, LaTeX
Externí odkaz:
http://arxiv.org/abs/1804.07413
Autor:
Efraimidis, Iason, Pastor, Carlos
We disprove a conjecture of Bombieri regarding univalent functions in the unit disk in some previously unknown cases. The key step in the argument is showing that the global minimum of the real function $\big(n\sin{x}-\sin(nx)\big)/\big(m\sin{x}-\sin
Externí odkaz:
http://arxiv.org/abs/1710.10462