Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Efimova, Olga Yu."'
Autor:
Efimova, Olga Yu.
The modification of simplest equation method to look for exact solutions of nonlinear partial differential equations is presented. Using this method we obtain exact solutions of generalized Korteweg-de Vries equation with cubic source and exact solut
Externí odkaz:
http://arxiv.org/abs/1011.4606
Autor:
Efimova, Olga Yu.
The generalization of the simplest equation method to look for exact solutions of systems of nonlinear differential equations is presented. The exact solutions of NDE systems describing the evolution of two interacting populations in two cases (both
Externí odkaz:
http://arxiv.org/abs/0809.3810
The fourth-order ordinary differential equation, defining new transcendents, is studied. The self-similar solutions of the Kaup-Kupershmidt and Savada-Kotera equations are shown to be found taking its solutions into account. Equation studied belongs
Externí odkaz:
http://arxiv.org/abs/nlin/0606042
The Burgers-Huxley equation is studied. All power and power-logarithmic expansions for travelling-wave solutions of this equation are presented. Using the power expansions, some exact solutions of this equation are found.
Comment: 15 pages, 4 fi
Comment: 15 pages, 4 fi
Externí odkaz:
http://arxiv.org/abs/nlin/0511038
One of the fourth-order analog to the first Painlev\'{e} equation is studied. All power expansions for solutions of this equation near points $z=0$ and $z=\infty$ are found by means of the power geometry method. The exponential additions to the expan
Externí odkaz:
http://arxiv.org/abs/nlin/0507026
Autor:
Efimova, Olga Yu.
Publikováno v:
In Applied Mathematics and Computation 2009 208(1):134-143
Publikováno v:
In Chaos, Solitons and Fractals 2006 30(1):110-124
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.